Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 30

Full-Text Articles in Biological and Chemical Physics

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey Jan 2023

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey

CMC Senior Theses

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a clinically effective and safe treatment, there is little understanding of the radiobiological relationship between absorbed dose and tissue response, and thus there is no dosimetric standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the time pattern of delivery. BED is a virtual dose that can …


Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray Dec 2022

Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray

Graduate Theses and Dissertations

Life is remarkable in how resilient it can be. Many organism, classified as ex- tremophiles, can not only survive in extreme environments, but they can thrive in them. In the search for extraterrestrial life, the best candidates to harbor life exist with some kind of extreme condition. Europa, for example, is a favorite for the possibility of accommodating life as we know it within our solar system. Thought there is believed to be a liquid ocean under its icy surface, this habitat would be under immense pressures and high salinity. To best know where to look for extraterrestrial life, it …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer Jun 2022

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Ongoing Calculus In The Cerebral Cortex, Luke Long May 2022

Ongoing Calculus In The Cerebral Cortex, Luke Long

Physics Undergraduate Honors Theses

Various modes of neuronal computations have long been theorized to be possible based on the structure and geometry of the brain. These computations also seem necessary for many of the integral functions of the brain, like information processing and regulatory processes in the body. However, experimental data directly supporting these claims have been rare.

In this study, data collected in mice from a large number of neurons over a long period of time provided the opportunity to search for some of these computations, specifically change detection and squaring calculations. Using Matlab, the goal of this analysis was to find statistically …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi May 2021

Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi

Honors College Theses

Proper regulation of neutral lipid storage (lipogenesis) and release (lipolysis) are critical molecular processes localized to an organelle called the Lipid Droplet (LD). The LD consists of a core with neutral lipids such as triacylglycerols (TAGs) and sterol esters surrounded by a phospholipid monolayer. Dysregulation of the processes localized to the LD are involved in the pathology of various diseases such as Neutral Lipid Storage Disease, diabetes, stroke and cancer. The non-enzymatic protein ABHD5 (α-β Hydrolase Domain-Containing Protein 5), is thought to play a key role in the process of lipolysis by forming homo-oligomers on the surface of the LD …


Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic May 2021

Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic

Doctoral Dissertations

Memristive systems occur in nature and are hallmarked via pinched hysteresis, the difference in the forward and reverse pathways for a given phenomenon. For example, neurons of the human brain are composed of synapses which apply the properties of memristance for neuronal communication, learning, and memory consolidation. Modern technology has much to gain from the characteristics of memristive systems, including lower power operation, on-chip memory, and bio-inspired computing. What is more, a relationship between memristive systems and synaptic plasticity exists and can be investigated focusing on homosynaptic and heterosynaptic plasticity. Where homosynaptic plasticity applies to interactions between neurons at a …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui Jan 2021

Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui

Electronic Theses and Dissertations

The central dogma of molecular biology dictates that a DNA sequence codes for an RNA sequence, which in turn codes for a sequence of amino acids that comprises a protein. Proteins are responsible with performing myriad functions within living organisms and most proteins require a folded structure in order to perform their function. The protein's structure is the direct link from sequence to function. This is known as the sequence - structure - function paradigm. However, this does not mean that the unfolded state is unimportant. In order to properly model the stability of the folded state, one needs to …


The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile Jan 2021

The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile

Williams Honors College, Honors Research Projects

Osteoarthritis is a degenerative joint disease that affects 10% of men and 13% of women over age of 60. It is the degradation of the cartilage between two bones; obesity, age, overuse, or injury are major contributors to the development of this disease. The joint is incapsulated by the synovial sac filled with a viscous solution that aids in lubrication referred to as synovial fluid. If the synovial sac is ruptured due to injury, positive ions (K+, Na+, Ca2+, and Fe3+) may affect viscoelastic properties within the sac. The purpose of this …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai Jun 2020

Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai

Dissertations, Theses, and Capstone Projects

Cytochrome c Oxidase (CcO), is the terminal electron acceptor in the membrane bound aerobic respiratory chain. It reduces O2 to water. The energy released by this reaction is stored by pumping protons from the high pH, N-side of the membrane to the low pH, P-side. The generated proton gradient provides the motive force for synthesis of ATP by the ATP synthase.

Building a proton gradient across the membrane requires that proton transport must occur along controllable proton pathways to prevent proton leakage to the N-side. It has been suggested that CcO function requires proton transfer channels in both the …


Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent May 2020

Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent

Electronic Theses and Dissertations

The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host cell plasma membranes (PM), but the mechanisms that direct HA clustering are not well understood. Previous studies have observed HA associated with actin rich regions of the PM, but there are no known direct interactions between HA and actin. Phosphatidylinositol 4,5-biphosphate (PIP2) is a signaling lipid in the PM which can regulate the actin cytoskeleton, and actin comets initiated by PIP2 are known to be exploited by HA to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, …


Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage Jan 2020

Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage

Electronic Theses and Dissertations

The watershed segmentation is an algorithm used to systematically track cell intercalary behaviors during germ band extension of the Drosophila embryo. Neighboring cells share a contracting vertical interface, called a T1, which continues contracting to a single point, a T2, and extending in the horizontal direction to create what is called a T3 interface (Fig. 1). Additionally, higher order vertices called rosettes occur when five or more cells meet at a common vertex. Simulated T2 events demonstrate that cell angle and not noise level in the image contributes to the incorrect detection of artifactual T1s in more acute angled cells …


Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu Jan 2020

Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu

Electronic Theses and Dissertations

Epithelial tubules form critical structures in various body tissues; how- ever, since they are difficult to access experimentally, their architecture and dynamics are not well understood. Here we examine the dynamic remodeling of epithelial tubes in vivo using a novel and uniquely accessible model system: the extracorporeal vasculature of Botryllus schlosseri (sea squirt). In Botryllus, massive retraction of blood vessels can be triggered without loss of barrier function, through (i) disrupting collagen crosslinking in the basement membrane using β-aminopropionitrile (BAPN); or (ii) disrupting the integrin pathway through inhibition of focal adhesion kinase (FAK). We performed stereographic projections of 3-dimensional …


Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh Mar 2019

Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh

Doctoral Dissertations

The polysaccharide cellulose is the main component of plant cell walls, so it is the most abundant polymer on Earth. While it is widely used in industry due to its remarkable properties, such as renewability and biodegradability, its biosynthesis is still not well understood. The large transmembrane protein Cellulose Synthase Complex (CSC) is responsible for synthesizing cellulose by polymerizing UDP glucose into the constituent glucan chains of cellulose. In this project, I used variable angle epi-fluorescence microscopy (VAEM) in combination with single-particle tracking to characterize the motion of GFP labeled CSCs in the hypocotyl of Arabidopsis thaliana (A. thaliana …


Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz Sep 2018

Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz

Dissertations, Theses, and Capstone Projects

In this thesis I show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into a ligand-gated or counterion-gated conformational molecular switch. To demonstrate this I first modified the designed helical bundle hemoprotein H4 using simple molecular modeling, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. Due to the high surface charge density, ligand binding to this protein is allosterically activated by low concentrations of divalent cations and the polyamine spermine. …


Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman Aug 2018

Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman

Electronic Theses and Dissertations

Aggregation of polyglutamine (polyQ)-rich polypeptides in neurons is a marker for nine neurodegenerative diseases. The molecular process responsible for the formation of polyQ fibrils is not well understood and represents a growing area of study. To enable development of treatments that could interfere with aggregation of polyQ peptides, it is crucial to understand the molecular mechanisms by which polyQ peptides aggregate into fibrils. Many experimental techniques have been employed to probe polyQ aggregation, however, observations from these studies have not lead to a unified understanding of the properties of these systems, instead yielding competing, fragmented theories of polyQ aggregation. This …


Photonic Tools For Advanced Sensing And Imaging At The Nanoscale., Jafar Hamed Ghithan May 2018

Photonic Tools For Advanced Sensing And Imaging At The Nanoscale., Jafar Hamed Ghithan

Electronic Theses and Dissertations

This dissertation reports a novel bio-sensing strategy based on single-mode, electro-active, integrated optical waveguide (SM-EA-IOW) platforms. It also reports the development of a super-resolved far-field optical imaging tool to enable optical, electronic, and spectroelectrochemical investigations at the nanoscale. SM-EA-IOW platforms with its outstanding sensitivity for spectroelectrochemical interrogation was combined with a sandwich bioassay for the development of a novel immunosensing based strategy for label-free detection of infectious pathogens. The strategy begins with the functionalization of the electroactive waveguide surface with a capturing antibody aimed at a specific target analyte. Once the target analyte is bound to the photonic interface, it …


Learning From Disorder And Noise In Physical Biology, Taylor Emil Firman Jan 2018

Learning From Disorder And Noise In Physical Biology, Taylor Emil Firman

Electronic Theses and Dissertations

Stochasticity, disorder, and noise play crucial roles in the functioning of many biological systems over many different length scales. On the molecular scale, most proteins are envisioned as pristinely folded structures, but intrinsically disordered proteins (IDPs) have no such folded state and still serve distinct purposes within the cell. At the scale of gene regulation, realistic in vivo conditions produce stochastic fluctuations in gene expression that can lead to advantageous bet-hedging strategies, but can be difficult to characterize using a deterministic framework. Even at the organismal scale, germband extension (GBE) in Drosophila melanogaster embryos systematically elongates the epithelial tissue using …


Can A Comprehensive Transition Plan To Barefoot Running Be The Solution To The Injury Epidemic In American Endurance Runners?, Michael A. Scarlett Jan 2018

Can A Comprehensive Transition Plan To Barefoot Running Be The Solution To The Injury Epidemic In American Endurance Runners?, Michael A. Scarlett

CMC Senior Theses

Fossils belonging to the genus Homo, dating as far back as two million years ago, exhibit uniquely efficient features suggesting that early humans had evolved to become exceptional endurance runners. Although they did not have the cushion or stability-control features provided in our modern day running shoes, our early human ancestors experienced far less of the running-related injuries we experience today. The injury rate has been estimated as high as 90% annually for Americans training for a marathon and as high as 79% annually for all American endurance runners. There is an injury epidemic in conventionally shod populations that …


Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera Jan 2017

Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera

Honors Undergraduate Theses

In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single …


Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey May 2016

Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey

Doctoral Dissertations

How nanometer-scale proteins position accurately within micron-scale bacteria has intrigued both biologists and physicists alike. A critical process requiring precise protein localization is cell division. In most bacteria, cell division starts with the self-assembly of the FtsZ proteins into filaments that form a ring-like structure encircling the cell at its middle, the Z-ring. The Z-ring is a scaffold for additional proteins that synthesize the lateral cell wall which separates the two daughter cells. If division planes are misplaced relative to bacterial chromosomes, also called nucleoids, daughter cells with incomplete genetic material can be produced. In Escherichia coli, research carried out …


Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer Sep 2013

Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer

Electronic Thesis and Dissertation Repository

In this thesis we described inexpensive alternatives to fabricate nanostructures on planar substrates and provided example applications to discuss the efficiency of fabricated nanostructures.

The first method we described is forming large area systematically changing multi-shape nanoscale structures on a chip by laser interference lithography. We analyzed the fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile. We presented experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion-milled glass substrates. Behavior of osteoblasts and osteoclasts on the nanostructures was investigated. These results …


Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega May 2013

Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega

Doctoral Dissertations

The combination of physics, biology, chemistry, and computer science constitutes the promising field of computational molecular biophysics. This field studies the molecular properties of DNA, protein lipids and biomolecules using computational methods. For this dissertation, I approached four problems involving the chemotaxis pathway, the set of proteins that function as the navigation system of bacteria and lower eukaryotes.

In the first chapter, I used a special-purpose machine for molecular dynamics simulations, Anton, to simulate the signaling domain of the chemoreceptor in different signaling states for a total of 6 microseconds. Among other findings, this study provides enough evidence to propose …


Adaptation And Stochasticity Of Natural Complex Systems, Roy David Dar May 2011

Adaptation And Stochasticity Of Natural Complex Systems, Roy David Dar

Doctoral Dissertations

The methods that fueled the microscale revolution (top-down design/fabrication, combined with application of forces large enough to overpower stochasticity) constitute an approach that will not scale down to nanoscale systems. In contrast, in nanotechnology, we strive to embrace nature’s quite different paradigms to create functional systems, such as self-assembly to create structures, exploiting stochasticity, rather than overwhelming it, in order to create deterministic, yet highly adaptable, behavior. Nature’s approach, through billions of years of evolutionary development, has achieved self-assembling, self-duplicating, self-healing, adaptive systems. Compared to microprocessors, nature’s approach has achieved eight orders of magnitude higher memory density and three orders …


Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka Apr 2006

Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka

Doctoral Dissertations

Brain activity generates electrical potentials that are spatio-temporal in nature. Electroencephalography (EEG) is the least costly and most widely used non-invasive technique for diagnosing many brain problems. It has high temporal resolution but lacks high spatial resolution.

The surface Laplacian will enhance the spatial resolution of EEG as it performs the second spatial derivative of the surface potentials. In an attempt to increase the spatial selectivity, researchers introduced a bipolar electrode configuration using a five point finite difference method (FPM) and others applied a quasi-bipolar (tri-polar with two elements shorted) concentric electrode configuration. To further increase the spatial resolution, the …