Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 118

Full-Text Articles in Biological and Chemical Physics

The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang Nov 2023

The Fate Of The Crossbridge After Phosphate Rebinding: Implications For Fatigue, Christopher P. Marang

Doctoral Dissertations

In response to repeated intense contractile activity, a muscle’s ability to generate force decreases due to the created state of muscular fatigue. This compromised force production state is dependent on changes within the microenvironment of muscle thought to alter the function of the force generating, contractile protein myosin. For example, phosphate (Pi), elevated during fatigue, has been suggested to alter how myosin generates force. However, the effects of Pi are not straightforward, as muscle fiber data suggest that Pi's interaction with myosin may be force-dependent. In particular, Pi has no effect on maximal shortening …


Optical Tweezers: Exerting Force With Light, Gabriella Seifert Jan 2023

Optical Tweezers: Exerting Force With Light, Gabriella Seifert

Scripps Senior Theses

Photons carry momentum. When a tightly-focused beam of photons hit a particle, they transfer some of their momentum to the particle, exerting a force. Optical tweezers take advantage of this phenomenon to trap (or “tweeze”) a spherical bead just after the focus of a diverging laser beam, creating a potential well that pulls in beads. In this thesis, I predict the force exerted on trapped beads and measure the actual force using an optical tweezers setup that I built. To predict the force, I follow the path of all possible rays from a diverging beam incident on a spherical bead …


Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne May 2022

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne

Articles

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review …


Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow Mar 2022

Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow

Honors Theses

Radiation is a form of energy that can damage materials at an atomic level. This has implications for the mobility of radioactive waste through containment materials. We are characterizing atomic defects in materials by using Electron-Positron Annihilation Lifetime Spectroscopy (EPALS). When an electron and positron come into contact with each other, they annihilate and release two antiparallel 511-keV gamma rays. In a pristine crystalline sample, positrons can easily annihilate with electrons, but in a sample with vacancies/defects in the crystal structure, positrons take longer to annihilate. Therefore, the more vacancies in a sample, the longer the average lifetime of a …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner Jun 2021

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner

Publications and Research

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome …


Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore Apr 2021

Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore

Electronic Theses and Dissertations

Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) that mediate PG bioactivities, including signal transduction, tissue morphogenesis, and matrix assembly. To understand GAG function, it is important to understand GAG structure and biophysics at atomic resolution. This is a challenge for existing experimental and computational methods because GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharides. Molecular dynamics (MD) simulations come close to overcoming this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies conformations from unbiased all-atom explicit-solvent MD simulations of short GAG polymers …


Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer Feb 2021

Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer

Ramifications

Abstract

In this experiment, the Rydberg constants for the hydrogen atom and He+ were determined by analysis of the emission spectra of Hand He, respectively, in comparison to the principal quantum numbers of each transition. Using both a hydrogen and then a helium atomic lamp attached to a 0.5 m grating spectrometer and a photomultiplier detector (PMT), a change in voltage detected by the PMT can be paired with a corresponding wavelength passing through the spectrometer from each emission peak in the visible to ultraviolet range. The peaks acquired from this change in voltage were analyzed to find their …


Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru Dec 2020

Nuclear-Targeted Gold Nanoparticles Enhance The Effects Of Radiation Therapy With And Without Liposomal Delivery, Maureen Aliru

Dissertations & Theses (Open Access)

Less that 10% of pancreatic cancer patients are eligible for curative resection, and clinical trials evaluating chemoradiation in locally advanced patients with unresectable disease have been largely disappointing. New and creative therapeutic approaches are needed to address the unment need for treatment options. The objective of this thesis is to advance radiosensitization of treatment-resistant densely desmoplastic pancreatic cancer using nanoparticles to surmount biological barriers to effective particle distribution for DNA-targeting.

Clinical translation of radiosensitizing nanoparticles has stalled owing to technical challenges. Current strategies to use AuNPs for radiosensitization require large quantities of gold, kilovoltage x-rays, immediate irradiation after intravenous administration, …


Investigations Of Cell-Penetrating And Membrane-Pore Forming Peptides, Rudramani Pokhrel Oct 2020

Investigations Of Cell-Penetrating And Membrane-Pore Forming Peptides, Rudramani Pokhrel

FIU Electronic Theses and Dissertations

Cell-penetrating and membrane-pore forming peptides are a class of membrane-active peptides. They are short sequence peptides having both hydrophilic and lipophilic combinations of amino acids. These peptides can have contrast functional diversity. Peptides encoded by viruses function as viroporins and play a critical role in viral replication, propagation, and pathogenesis. One such peptide is the Ebola virus delta peptide, which forms a pore in the host cell membrane. Another set of pore-forming peptides are antimicrobial Lantibiotic peptides that may be useful for killing antibiotic resistant bacteria by disrupting the bacterial membrane through two different possible mechanisms. Not only can they …


A Vibrational Spectroscopic Based Approach For Diagnosing Babesia Bovis Infection, Anja Ruther, David Perezguaita, William Poole, Brian Cooke, Carlos Suarez, Philip Heraud, Bayden Wood Jan 2020

A Vibrational Spectroscopic Based Approach For Diagnosing Babesia Bovis Infection, Anja Ruther, David Perezguaita, William Poole, Brian Cooke, Carlos Suarez, Philip Heraud, Bayden Wood

Articles

Babesia bovis parasites present a serious and significant health concern for the beef and dairy industries in many parts of the world. Difficulties associated with the current diagnostic techniques include they are prone to human error (microscopy) or expensive and time consuming (Polymerase Chain Reaction) to perform. Little is known about the biochemical changes in blood that are associated with Babesia infections. The discovery of new biomarkers will lead to improved diagnostic outcomes for the cattle industry. Vibrational spectroscopic technologies can record a chemical snapshot of the entire organism and the surrounding cell thereby providing a phenotype of the organism …


Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu May 2019

Topics In Three-Dimensional Imaging, Source Localization And Super-Resolution, Zhixian Yu

Physics & Astronomy ETDs

The realization that twisted light beams with helical phasefronts could carry orbital angular momentum (OAM) that is in excess of the photon's spin angular momentum (SAM) has spawned various important applications. One example is the design of novel imaging systems that achieve three-dimensional (3D) imaging in a single snapshot via the rotation of point spread function (PSF).

Based on a scalar-field analysis, a particular simple version of rotating PSF imagery, which was proposed by my advisor Dr. Prasad, furnishes a practical approach to perform 3D source localization using a spiral phase mask that generates a combination of Bessel vortex beams. …


Scope Of Self-Interacting Thermal Wimps In A Minimal U(1) D Extension And Its Future Prospects, Rahool Kumar Barman, Biplob Bhattacherjee, Arindam Chatterjee, Arghya Choudhury, Aritra Gupta May 2019

Scope Of Self-Interacting Thermal Wimps In A Minimal U(1) D Extension And Its Future Prospects, Rahool Kumar Barman, Biplob Bhattacherjee, Arindam Chatterjee, Arghya Choudhury, Aritra Gupta

Journal Articles

In this work we have considered a minimal extension of Standard Model by a local U(1) gauge group in order to accommodate a stable (fermionic) Dark Matter (DM) candidate. We have focussed on parameter regions where DM possesses adequate self-interaction, owing to the presence of a light scalar mediator (the dark Higgs), alleviating some of the tensions in the small-scale structures. We have studied the scenario in the light of a variety of data, mostly from dark matter direct searches, collider searches and flavor physics experiments, with an attempt to constrain the interactions of the standard model (SM) particles with …


A Hydrogen-Bond Stabilized Mechanism Of Oxygen Evolution In Photosystem Ii: A Proposed Computational Experiment, Christopher King Jan 2019

A Hydrogen-Bond Stabilized Mechanism Of Oxygen Evolution In Photosystem Ii: A Proposed Computational Experiment, Christopher King

Undergraduate Theses, Professional Papers, and Capstone Artifacts

The ability of plants to take in water and release oxygen into the atmosphere is crucial to the survival of life on Earth. During photosynthesis, water is oxidized to O2 (dioxygen) at the Oxygen Evolving Complex (OEC) of Photosystem II. Structurally, the OEC resembles a box with an open lid, consisting of metal atoms (four manganese and one calcium) bridged by oxygen atoms. The mechanism of action of this complex, however, is not well understood. Various mechanisms have been proposed in recent years to explain how the OEC oxidizes water to dioxygen, but all of these mechanisms contain gaps …


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl Sep 2018

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of …


Achieving A Stable Magneto-Optical Trap, Chasen S. Himeda Apr 2018

Achieving A Stable Magneto-Optical Trap, Chasen S. Himeda

Honors Thesis

The utilization of the Magneto-Optical Trap (MOT) as a method for cooling and confining atoms is a recent development in the field of modern optical physics. Producing an effective MOT relies on a constant magnetic field throughout the trapping region and successful laser cooling, a technique used to achieve optical molasses by slowing particles using a three-dimensional intersection of laser beams. A successful MOT occurs when the trapped atoms slow down to approximately 30 cm/s at a temperature in the microkelvin range and is observable when a small bright orb of atoms is located in the center of the chamber. …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram Nov 2017

Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram

Physics Faculty Publications and Presentations

When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the timescale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields, and a chemical transport model, we estimated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL), the region of the atmosphere where SOA concentrations are on average the highest. First, a parameterization for viscosity as a function of temperature and RH was developed for α-pinene SOA using room-temperature and low-temperature viscosity data for α-pinene SOA generated in the laboratory using mass concentrations of ∼ 1000 µg m−3. Based on this parameterization, the mixing times within α-pinene SOA are < 1 h for 98.5 % and 99.9 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant (total organic aerosol concentrations are > 0.5 µg m−3 at the surface). Next, as a starting …


Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey Aug 2017

Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey

Physics Faculty Publications

On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the …


Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates May 2017

Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates

Senior Theses

Understanding how water molecules behave in isolation is vital to understand many fundamental processes in nature. To that end, scientists have begun studying crystals in which single water molecules become trapped in regularly occurring cavities in the crystal structure. As part of that investigation, numerical models used to investigate the dynamics of isolated water molecules are sought to help bolster our fundamental understanding of how these systems behave. To that end, the efficacy of three computational methods—the Euler Method, the Euler-Aspel Method and the Beeman Method—is compared using a newly defined parameter, called the predictive stability coefficient ρ. This …


Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson Apr 2017

Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson

Physics Publications

The absolute concentration of zinc in human fingernail clippings tested ex vivo was determined by 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy dispersive x-ray spectroscopy. Using this protocol, a partial least squares regression model predicted the zinc concentration in five subjects’ fingernails to within 7 ppm on average. The variation of the zinc concentration with depth into the nail as determined by laser-induced breakdown spectroscopy was studied and found to …


Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky Mar 2017

Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky

UNO Student Research and Creative Activity Fair

Detection and monitoring of disease biomarkers increases probability of successful disease treatment. Surface enhanced Raman scattering (SERS) has several advantages over conventional readout strategies utilized in detecting immunoassays. SERS provides a method for chemical characterization based on molecular vibrational spectra. Raman signals are typically weak and need to be enhanced. This can be done using plasmons in nanoparticles of noble metals, we use gold (Au). Molecules with known spectra, Raman reporter molecules (RRM), can be adsorbed to Au nanoparticles. This enhances the Raman signal of the RRM when illuminated by a laser of optimal wavelength. Adding antibodies to nanoparticles modified …


Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov Feb 2017

Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov

Dissertations, Theses, and Capstone Projects

Here we present the utilization of Second Harmonic Generation (SHG) for label-free imaging of microtubules (MTs) in the retinal nerve fiber layer (RNFL). MTs are an important part of axonal cytoskeleton, providing structural support and serving as a railroad in intracellular transport. We demonstrate the application of SHG microscopy to the following studies: 1) Can changes in MT conformation be detected when treated with a stabilizing drug (Taxol); 2) if disruption in MT precedes loss of axons in a mouse model of glaucoma (DBA/2J); and 3) if elevated levels of intraocular pressure affect MT integrity. Our results validate SHG imaging …


Retardation Of Bulk Water Dynamics By Disaccharide Osmolytes.Pdf, Nimesh Shukla Aug 2016

Retardation Of Bulk Water Dynamics By Disaccharide Osmolytes.Pdf, Nimesh Shukla

Nimesh Shukla

No abstract provided.


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jul 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions. In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these …


Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang Feb 2016

Study Of Infrared Emission Spectroscopy For The B 1Δg- A 1Πu And B ′1Σg +- A 1Πu Systems Of C2, Wang Chen, Kentarou Kawaguchi, Peter F. Bernath, Jian Tang

Chemistry & Biochemistry Faculty Publications

Thirteen bands for the B1Δg-A1Πu system and eleven bands for the B′1Σg +-A1Πu system of C2 were identified in the Fourier transform infrared emission spectra of hydrocarbon discharges. The B′1Σg + v = 4 and the B1Δg v = 6, 7, and 8 vibrational levels involved in nine bands were studied for the first time. A direct global analysis with Dunham parameters was carried out satisfactorily for the B1Δg-A1Πu system except for a …


Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Fine‐Structure Mixing Within The Zn(43pj) Multiplet By Collisions With The Noble Gases, Xianming Han, J. F. Kelly Oct 2015

Fine‐Structure Mixing Within The Zn(43pj) Multiplet By Collisions With The Noble Gases, Xianming Han, J. F. Kelly

Xianming Han

Measurements of rate coefficients for intramultiplet state transfer of Zn(4 3 P 1→4 3 P J) by collisions with the rare gases are presented. The state‐to‐state binary rate coefficients are derived from least‐squares fittings of the time‐resolved triexponential behavior of the 4 3 P 1fluorescence. These rate coefficients were studied systematically over a temperature range of 690–1100 K in order to characterize the velocity dependence of the collisional coupling. The systematic behavior of the rate coefficients with varying temperature and noble gas species is qualitatively consistent with a nearly adiabatic coupling limit for noncrossing levels.


Sucralose Destabilization Of Protein Structure.Pdf, Nimesh Shukla Mar 2015

Sucralose Destabilization Of Protein Structure.Pdf, Nimesh Shukla

Nimesh Shukla

No abstract provided.


Sucralose Destabilization Of Protein Structure, Lee Chen, Nimesh Shukla, Inha Cho, Erin F. Cohn, Erika A. Taylor, Christina M. Othon Mar 2015

Sucralose Destabilization Of Protein Structure, Lee Chen, Nimesh Shukla, Inha Cho, Erin F. Cohn, Erika A. Taylor, Christina M. Othon

Erika A. Taylor, Ph.D.

Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence …