Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biological and Chemical Physics

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram Nov 2017

Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram

Physics Faculty Publications and Presentations

When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the timescale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields, and a chemical transport model, we estimated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL), the region of the atmosphere where SOA concentrations are on average the highest. First, a parameterization for viscosity as a function of temperature and RH was developed for α-pinene SOA using room-temperature and low-temperature viscosity data for α-pinene SOA generated in the laboratory using mass concentrations of ∼ 1000 µg m−3. Based on this parameterization, the mixing times within α-pinene SOA are < 1 h for 98.5 % and 99.9 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant (total organic aerosol concentrations are > 0.5 µg m−3 at the surface). Next, as a starting …


Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey Aug 2017

Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey

Physics Faculty Publications

On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the …


Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates May 2017

Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates

Senior Theses

Understanding how water molecules behave in isolation is vital to understand many fundamental processes in nature. To that end, scientists have begun studying crystals in which single water molecules become trapped in regularly occurring cavities in the crystal structure. As part of that investigation, numerical models used to investigate the dynamics of isolated water molecules are sought to help bolster our fundamental understanding of how these systems behave. To that end, the efficacy of three computational methods—the Euler Method, the Euler-Aspel Method and the Beeman Method—is compared using a newly defined parameter, called the predictive stability coefficient ρ. This …


Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson Apr 2017

Determination Of The Zinc Concentration In Human Fingernails By Laser-Induced Breakdown Spectroscopy, Steven J. Rehse, Vlora A. Riberdy, Christopher J. Frederickson

Physics Publications

The absolute concentration of zinc in human fingernail clippings tested ex vivo was determined by 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy dispersive x-ray spectroscopy. Using this protocol, a partial least squares regression model predicted the zinc concentration in five subjects’ fingernails to within 7 ppm on average. The variation of the zinc concentration with depth into the nail as determined by laser-induced breakdown spectroscopy was studied and found to …


Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky Mar 2017

Improving Sers-Based Readout Strategy For Biomarker Detecting Immunoassays, Joseph Smolsky

UNO Student Research and Creative Activity Fair

Detection and monitoring of disease biomarkers increases probability of successful disease treatment. Surface enhanced Raman scattering (SERS) has several advantages over conventional readout strategies utilized in detecting immunoassays. SERS provides a method for chemical characterization based on molecular vibrational spectra. Raman signals are typically weak and need to be enhanced. This can be done using plasmons in nanoparticles of noble metals, we use gold (Au). Molecules with known spectra, Raman reporter molecules (RRM), can be adsorbed to Au nanoparticles. This enhances the Raman signal of the RRM when illuminated by a laser of optimal wavelength. Adding antibodies to nanoparticles modified …


Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov Feb 2017

Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov

Dissertations, Theses, and Capstone Projects

Here we present the utilization of Second Harmonic Generation (SHG) for label-free imaging of microtubules (MTs) in the retinal nerve fiber layer (RNFL). MTs are an important part of axonal cytoskeleton, providing structural support and serving as a railroad in intracellular transport. We demonstrate the application of SHG microscopy to the following studies: 1) Can changes in MT conformation be detected when treated with a stabilizing drug (Taxol); 2) if disruption in MT precedes loss of axons in a mouse model of glaucoma (DBA/2J); and 3) if elevated levels of intraocular pressure affect MT integrity. Our results validate SHG imaging …