Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

West Virginia University

Theses/Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 43

Full-Text Articles in Physics

Examining The Relations Among Academic And Non-Cognitive Factors And Student Achievement, Dona Sachini Hasanjalie Hewagallage Jan 2023

Examining The Relations Among Academic And Non-Cognitive Factors And Student Achievement, Dona Sachini Hasanjalie Hewagallage

Graduate Theses, Dissertations, and Problem Reports

Since the 1980s, Physics Education Research (PER) has explored the factors influencing students' success in college. This manuscript reports three different studies to understand the impact of different factors on students' college physics achievement. The first study explored several academic (high school physics preparation, high school preparation, math readiness, and ACT or SAT verbal and mathematics scores) and non-cognitive (self-efficacy, personality, belonging, grade expectation, and demographic) factors using correlation and linear regression analysis to understand their relation to students' physics conceptual understanding measured by the Force and Motion Conceptual Evaluation (FMCE). High school preparation was found to be the most …


Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc Jan 2023

Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc

Graduate Theses, Dissertations, and Problem Reports

Single photons emitted from self-assembled quantum dots have been widely studied to use as a promising qubit for quantum information processing. Therefore, it is critical to fully understand the emission spectra from the quantum dot's excitation if we want to use a single photon as a quantum bit. It is almost impossible to produce rotationally symmetric quantum dots due to various growth conditions and restrictions. So the real quantum dots do not have a perfectly symmetric structure. A broken rotational symmetry causes an asymmetric exchange interaction between electron and hole, leading to a fine structure splitting between two excited states. …


Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang Jan 2023

Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang

Graduate Theses, Dissertations, and Problem Reports

Energetic charged particles trapped in the Earth’s radiation belt form a hazardous space environment for artificial electronic systems and astronauts. The study of Earth's radiation belt is becoming increasingly important with the development of communication technology, which plays a significant role in modern society. Earth’s radiation belt is highly dynamic, and the electron flux can drop by several orders of magnitude within a few hours which is called radiation belt dropout. The fast dropout of energetic electrons in the radiation belt, despite its significance, has not been thoroughly studied. One of the most compelling outstanding questions in Earth's radiation belt …


Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya Jan 2023

Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya

Graduate Theses, Dissertations, and Problem Reports

The study of energy conversion in collisionless plasmas that are not in local thermodynamic equilibrium (LTE) is at the leading edge of plasma physics research. Plasma constituents in such systems can exhibit highly structured phase space densities that deviate significantly from that of a Maxwellian. A standard approach has emerged in recent years for investigating energy conversion between bulk flow and thermal energy in collisionless plasmas using the non-LTE generalization of the first law of thermodynamics. The primary focus is placed on pressure-strain interaction (PS) term, with a particular emphasis on its non-LTE piece called Pi − D. Recent studies …


Discovering And Understanding High Performance Materials Using Density Functional Theory: Quantum Mechanical Simulations And The Consequences Of Symmetry, Olivia M. Pavlic Jan 2023

Discovering And Understanding High Performance Materials Using Density Functional Theory: Quantum Mechanical Simulations And The Consequences Of Symmetry, Olivia M. Pavlic

Graduate Theses, Dissertations, and Problem Reports

There are two primary ways that atomic level modeling data is used: materials prediction and understanding materials properties. This dissertation work encom- passes two studies, each of which explore one application. Both studies rely on the highly successful density functional theory (DFT) formalism but differ in that two different implementations of DFT are used on two different high performance materials. The first study on bulk magnesium (Mg) metal alloys explores materials prediction and relies on VASP, a commercially maintained plane-wave DFT code which has been used extensively to successfully study a wide range of materials. [1] The approach used in …


Methods For Analyzing Physics Student Retention And Physics Curricula, John Darrell Hansen Jan 2023

Methods For Analyzing Physics Student Retention And Physics Curricula, John Darrell Hansen

Graduate Theses, Dissertations, and Problem Reports

Retention of students in college has been a concern of academic institutions for many years. In the last two decades, the focus on student retention in STEM fields has intensified. The current graduation rate of students in science, technology, engineering and mathematics (STEM) fields is well below that required to fill the projected need of STEM professionals. The work presented in this dissertation investigates the problem of student retention in physics programs. Four studies were performed. The first identifies the relationships between student retention and pre-college and early-college academic factors at an eastern U.S. university using logistic regression and Bayesian …


Analytical Heat Transfer Modeling Of The Microwave Heating Process: A Focus On Carbon Black, Craig Offutt Jan 2023

Analytical Heat Transfer Modeling Of The Microwave Heating Process: A Focus On Carbon Black, Craig Offutt

Graduate Theses, Dissertations, and Problem Reports

Electronic waste (e-waste) has become a significant environmental issue due to the rapid advancement of technology, increasing demand for electronic devices, and shorter lifespan of electronics. One critical step in processing the e-waste involves ball milling as a means of preparing the recycling e-waste for the recovery of critical materials. Ball milling is a technique that involves the mechanical crushing and grinding of electronic waste to reduce its size and improve its reactivity during recovery. Our focused recovery technique is based on a microwave recovery technique of these critical materials from e-waste. The size and distribution of the e-waste with …


Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul Jan 2022

Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul

Graduate Theses, Dissertations, and Problem Reports

Cutting-edge plasma experiments continue to push the frontiers of plasma science. Two such groups of experiments, helicon sources and laboratory magnetic reconnection, are the focus of this thesis. The relatively high plasma density achieved for modest input powers makes helicon source plasmas ideal testbeds for fusion-relevant phenomena without the complexities associated with fusion devices. Examples include plasma-material interaction (PMI) studies, divertor region studies, and boundary physics studies. As advancements in helicon source design and technology make operation at higher power for longer times possible, understanding of the plasma dynamics, particularly ion dynamics, is vital.

Laboratory experiments are essential to advancing …


Microwave Enhanced Electron Energy Distribution Functions, John Samuel Mckee Jan 2022

Microwave Enhanced Electron Energy Distribution Functions, John Samuel Mckee

Graduate Theses, Dissertations, and Problem Reports

The use of two (or more) radio frequency (RF) sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via R-mode (anti-parallel to the background magnetic field …


Development Of Computational Methods For Electronic Structural Characterization Of Strongly Correlated Materials: From Different Ab-Initio Perspectives, Uthpala K. Herath Jan 2022

Development Of Computational Methods For Electronic Structural Characterization Of Strongly Correlated Materials: From Different Ab-Initio Perspectives, Uthpala K. Herath

Graduate Theses, Dissertations, and Problem Reports

The electronic correlations in materials drive a variety of fascinating phenomena from magnetism to metal-to-insulator transitions (MIT), which are due to the coupling between electron spin, charge, ionic displacements, and orbital ordering. Although Density Functional Theory (DFT) successfully describes the electronic structure of weakly interacting material systems, being a static mean-field approach, it fails to predict the properties of Strongly Correlated Materials (SCM) that include transition and rare earth metals where there is a prominent electron localization as in the case of d and f orbitals due to the nature of their spatial confinement.

Dynamical Mean Field Theory (DMFT) is …


Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson Jan 2022

Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson

Graduate Theses, Dissertations, and Problem Reports

Semiconductor quantum dots (QDs) are promising candidates to fulfill a wide range of applications in real-world quantum computing, communication, and networks. Their excellent optical properties such as high brightness, single-photon purity, and narrow linewidths show potential utility in many areas. In order to realize long term goals of integration into complex and scalable quantum information systems, many current challenges must be overcome. One of these challenges is accomplishment of all necessary computing operations within a QD, which might be enabled by coherent manipulation of single QD energy level structures. In the realm of scalability for quantum devices, a way to …


Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam Jan 2022

Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam

Graduate Theses, Dissertations, and Problem Reports

Real-time health monitoring of high temperature systems (>500oC) in harsh environments is necessary to prevent catastrophic events caused by structural failures, varying pressure, and chemical reactions. Conventional solid-state temperature sensors such as resistance temperature detectors (RTDs) and thermocouples are restricted by their operating environments, sensor dimensions and often require external power sources for their operation. The current work presents the research and development of RF-based passive wireless sensing technology targeting high temperatures and harsh environmental conditions. Passive wireless devices are generally classified as near-field and far-field devices based on the interrogation distance. Near-field sensors are placed at …


Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr Jan 2022

Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr

Graduate Theses, Dissertations, and Problem Reports

Research involving light-matter interactions in semiconductor nanostructures has been an interesting topic of investigation for decades. Many systems have been studied for not only probing fundamental physics of the solid state, but also for direct development of technological advancements. Research regarding self-assembled, epitaxially grown quantum dots (QDs) has proven to be prominent in both regards. The development of a reliable, robust source for the production of quantum bits to be utilized in quantum information protocols is a leading venture in the world of condensed matter and solid-state physics. Fluorescence from resonantly driven QDs is a promising candidate for the production …


Scaling Theory Of 3d Magnetic Reconnection X-Line Spreading, Milton Arencibia Jan 2022

Scaling Theory Of 3d Magnetic Reconnection X-Line Spreading, Milton Arencibia

Graduate Theses, Dissertations, and Problem Reports

Magnetic reconnection is fundamental process in plasmas that converts magnetic energy into kinetic and thermal energy via a change in magnetic topology. Magnetic reconnection is known to mediate eruptive solar flares, geomagnetic substorms that create the Northern lights, heating and particle acceleration in controlled fusion devices, and is thought to be an important process in numerous settings in high-energy astrophysics. Classical models of reconnection are two-dimensional (2D), but naturally occurring reconnection is three-dimensional (3D), and a manifestation of the 3D nature is that the x-line where the magnetic field topology changes has a finite extent in the direction normal to …


From Evaluating The Performance Of Approximations In Density Functional Theory To A Machine Learning Design, Pedram Tavazohi Jan 2022

From Evaluating The Performance Of Approximations In Density Functional Theory To A Machine Learning Design, Pedram Tavazohi

Graduate Theses, Dissertations, and Problem Reports

Density-functional theory (DFT) has gained popularity because of its ability to predict the properties of a large group of materials a priori. Even though DFT is exact, there are inaccuracies introduced into the theory due to the approximations in the exchange-correlation (XC) functionals. Over the 50 years of its existence, scientists have tried to improve the design of the XC functionals. The errors introduced by these functionals are not consistent across all types of solid-state materials. In this project, a high throughput framework was utilized to compare the theoretical DFT predictions with the experimental results available in the Inorganic Crystal …


Electronic Structure Of Early Transition Metal Complexes Supported By Pyridine Polypyrrolide Ligands, Dylan Connor Leary Jan 2022

Electronic Structure Of Early Transition Metal Complexes Supported By Pyridine Polypyrrolide Ligands, Dylan Connor Leary

Graduate Theses, Dissertations, and Problem Reports

A thorough study of photoluminescent molecules involving the pyridine polypyrrole(ide) ligand platform has been conducted. A detailed analysis on speciation of the proligand H2(MesPDPPh) (H2MesPDPPh = 2,6-bis(5-mesityl-3-phenyl-1H-pyrrol-2-yl)-pyridine) and its dilithium salt Li2(MesPDPPh) revealed temperature- and solvent-dependent effects. These molecules, along with the hydrochloric acid adduct [H3(MesPDPPh)]Cl were found to exhibit short-lived photoluminescence in both tetrahydrofuran and benzene solution. These findings confirm the hypothesis that heavy-atom involvement is crucial for the favorable photophysical properties observed for the Zr(PDP)2 …


Hot-Carrier Dynamics And Transport Mechanisms In Inas/Alassb Multiple Quantum Wells, Herath Pathiranage Janaka Chathuranga Piyathilaka Jan 2022

Hot-Carrier Dynamics And Transport Mechanisms In Inas/Alassb Multiple Quantum Wells, Herath Pathiranage Janaka Chathuranga Piyathilaka

Graduate Theses, Dissertations, and Problem Reports

Semiconductor photovoltaics convert light into electricity through the extraction of photo-excited charge carriers. Among the most important parameters for a photovoltaic cell are good optical absorption in the desired region of the electromagnetic spectrum, and sufficient excited-state lifetimes and mobilities of the photocarriers to allow for charge separation and extraction before recombination. For solar cell applications there are significant challenges to overcome to improve the efficiency of the light-to-electricity conversion. The cells are most commonly made of silicon, which has a nearly perfect bandgap for absorbing the most solar radiation, an indirect bandgap to give a long photocarrier lifetime and …


Investigation Of Ions Accelerated Through Electrostatic Menisci In An Inductively Coupled Plasma, David D. Caron Jan 2021

Investigation Of Ions Accelerated Through Electrostatic Menisci In An Inductively Coupled Plasma, David D. Caron

Graduate Theses, Dissertations, and Problem Reports

Plasmas are used in semiconductor fabrication as they allow for very precise control over processes such as etching and doping. This is achieved by extracting a beam of ions from the plasma to interact with and modify the surface of a silicon wafer. However, conventional fabrication methods are reaching spatial limitations as semiconductor features reach the atomic scale. Therefore, in order to better control the fabrication processes and facilitate the transition to three-dimensional architecture, a greater understanding of ion beam formation is needed. Ion beams are extracted at the boundary between the Debye sheath and an externally applied potential, which …


Estimating The Azimuthal Mode Structure Of Ultra Low Frequency Waves And Its Effects On The Radial Diffusion Of Radiation Belt Electrons, Mohammad Barani Jan 2021

Estimating The Azimuthal Mode Structure Of Ultra Low Frequency Waves And Its Effects On The Radial Diffusion Of Radiation Belt Electrons, Mohammad Barani

Graduate Theses, Dissertations, and Problem Reports

Characterizing the azimuthal mode number 𝑚 of Ultra Low Frequency (ULF) waves is critical to quantifying the radial diffusion of radiation belt electrons. A Wavelet cross-spectral technique is applied to the compressional ULF waves observed by multiple pairs of GOES and MMS satellites to estimate the mode structure of ULF waves. A more realistic distribution of mode numbers is achieved by inclusion of the modes corresponding to different wave propagation directions as well as at 𝑚 higher than fundamental mode number. For the event study of a geomagnetic storm using GOES data, ULF wave power is found to dominate at …


Majorana Nanostructures And Their Electrostatic Environment, Benjamin David Woods Jan 2021

Majorana Nanostructures And Their Electrostatic Environment, Benjamin David Woods

Graduate Theses, Dissertations, and Problem Reports

Majorana zero modes (MZMs) are zero-energy excitations emerging in one- and two-dimensional topological superconductors. These exotic modes have attracted much attention in the last decade due to their topological protection and non-Abelian statistics, which make them possible building blocks for topological quantum computation. In particular, semiconductor-superconductor (SM-SC) nanostructures have attracted the most attention with several measurements being consistent with the presence of MZMs. Debate continues, however, whether MZMs or topologically-trivial Andreev bound states are responsible for such measurements.

In order to interpret experimental results distinguishing MZMs from Andreev bound states and gain a better understanding of what conditions need to …


Recovery Of Phosphorus From Florida Phosphatic Waste Clay, Amir Eskanlou Jan 2021

Recovery Of Phosphorus From Florida Phosphatic Waste Clay, Amir Eskanlou

Graduate Theses, Dissertations, and Problem Reports

This MS thesis examines the recovery of phosphorus (P) from Florida waste clay (WC). A comprehensive literature review revealed that: (i)-The most important values being lost to WC are P and rare earth elements (REEs). For the recovery of these values from WC, two crucial attempts are the removal of extremely fine-sized clays, followed by the recovery of phosphate content, which can pave the path for the recovery of REEs; (ii)-Any scientific/ technological solution should, at the same time, be economically and environmentally attractive to the industry. As such, moving from mostly chemical separation processes to the primarily physical/ physicochemical …


Equilibrium And Non-Equilibrium Ultrafast Carrier Transport And Dynamics In Chalcopyrite Semiconductors, Rishmali Thanuja Sooriyagoda Jan 2021

Equilibrium And Non-Equilibrium Ultrafast Carrier Transport And Dynamics In Chalcopyrite Semiconductors, Rishmali Thanuja Sooriyagoda

Graduate Theses, Dissertations, and Problem Reports

Chalcopyrite crystals in the II-IV-V2 family have received significant interest due to their high nonlinearity, composition-tunable bandgaps, wide transparency windows, and high damage threshold. These semiconductors have been explored for electromagnetic (EM) screening, spintronic and photovoltaic applications, making them good optical and optoelectronic materials. This thesis uses terahertz spectroscopy to understand optical, electronic, and vibrational dynamical processes in CdGeP2, ZnGeP2 and CdSiP2 chalcopyrite semiconductors.

We have employed Terahertz time-domain spectroscopy to investigate temperature-dependent ground-state properties of bulk chalcopyrite crystals that can be related to electronic transport and electron-lattice interactions. The complex spectra provide refraction and …


Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi Jan 2021

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi

Graduate Theses, Dissertations, and Problem Reports

While other films are discussed, this dissertation will focus on detailed studies of the dc and ac bulk magnetometry in a characteristic 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 (001). The dc bulk magnetometry measurements show that the sample is magnetically inhomogeneous. Temperature variation of magnetization (M vs. T) was measured in zero-field-cooled and field-cooled protocols to determine the blocking temperature TB in different applied magnetic fields. The field variation of TB is interpreted as the presence of embedded spin clusters of 1.4 nm. Moreover, the M vs. …


Topic Modeling And Cultural Nature Of Citations, Marie Coraline Dumaz Jan 2021

Topic Modeling And Cultural Nature Of Citations, Marie Coraline Dumaz

Graduate Theses, Dissertations, and Problem Reports

Ever since the beginning of research journals, the number of academic publications has been increasing steadily. Nowadays, especially, with the new importance of online open-access journals and databases, research papers are more easily available to read and share. It also becomes harder to keep up with novelties and grasp an idea of the general impact of a given researcher, institution, journal, or field. For this reason, different bibliometric indicators are now routinely used to classify and evaluate the impact or significance of individual researchers, conferences, journals, or entire scientific communities. In this thesis, we provide tools to study trends in …


Development Of Synthetic Coal Char Simulant For Microwave Conversion Studies: A Computationally-Driven Approach, Kevin A. Hager Jan 2021

Development Of Synthetic Coal Char Simulant For Microwave Conversion Studies: A Computationally-Driven Approach, Kevin A. Hager

Graduate Theses, Dissertations, and Problem Reports

Recent experimental demonstration of new reaction windows for coal char/methane reactions that are less energy-intensive, provides innovation for modular reactors. However, the correlation of the exact mechanism for the enhancement of these reaction windows is not certain. This study investigates the simplification of these experimental studies by developing a well-characterized coal char simulant. The approach involves using a computational approach to screen macroscopic composition to replicate the dielectric and compositional response of actual char. This study is focused on PRB coal char. A discrete element method (DEM) technique was used to simulate the packing of coal chars to give the …


Experimental Investigations Of Contact Friction And Transport Properties Of Monolayer And Bilayer Graphene, Prakash Gajurel Jan 2021

Experimental Investigations Of Contact Friction And Transport Properties Of Monolayer And Bilayer Graphene, Prakash Gajurel

Graduate Theses, Dissertations, and Problem Reports

Results obtained from experimental investigations of contact friction in monolayer and bilayers graphene and the related effects on their transport properties are presented here along with their discussion and interpretation. For this purpose, chemical vapor deposited (CVD) graphene samples on SiO2/Si were prepared. The samples were characterized by atomic force microscopy (AFM), Raman and X-ray photoelectron spectroscopy (XPS). Summaries of the results are given below.

Defects-controlled friction in graphene is of technological importance but the underlying mechanism remains a subject of debate. The new results obtained from the analysis of lateral force microscopy images revealed that the contact …


Single And Multi-Photon Laser Induced Fluorescence For Electric Thruster And Fusion Applications, Thomas E. Steinberger Jan 2021

Single And Multi-Photon Laser Induced Fluorescence For Electric Thruster And Fusion Applications, Thomas E. Steinberger

Graduate Theses, Dissertations, and Problem Reports

Single and Multi-photon Laser Induced Fluorescence for Electric Thruster and Fusion Applications

Thomas Edward Steinberger

Laser-based diagnostics are increasingly sought after to investigate a variety of plasmas due to their non-perturbative capabilities. Specifically, laser induced fluorescence (LIF) provides a highly localized and precise spectroscopic technique to measure absolute density, temperature, and bulk flow. In this work, LIF and two-photon absorption laser induced fluorescence (TALIF) are used to investigate electric propulsion and fusion-relevant plasmas, respectively. Ion velocity distribution functions (IVDF) of singly ionized atomic iodine (I II) are measured for the first time and lineshape characteristics are presented for the diagnosis …


Control Of Charged Particle Dynamics And Electron Power Absorption Dynamics Utilizing Voltage Waveform Tailoring In Capacitively Driven Radio-Frequency Plasmas, Steven W. Brandt Jan 2020

Control Of Charged Particle Dynamics And Electron Power Absorption Dynamics Utilizing Voltage Waveform Tailoring In Capacitively Driven Radio-Frequency Plasmas, Steven W. Brandt

Graduate Theses, Dissertations, and Problem Reports

In this work, experimental measurements and analysis of numerical simulations are performed for capacitively coupled plasmas driven by tailored voltage waveforms under conditions which examine complicating factors present in industrial processes, including the influence of resonance effects, electronegative gases or gas mixtures, and plasma-surface interactions at a changing plasma-surface interface. Furthermore, the influence of different tailored voltage waveforms on the spatio-temporal electron power absorption, the generation of a DC self-bias, and on process relevant plasma parameters like ion energy distribution functions is investigated to provide a more complete understanding of the underlying fundamental plasma physics responsible for sustaining the discharge. …


On Demand Nanoscale Phase Manipulation Of Vanadium Dioxide By Scanning Probe Lithography, Dustin Schrecongost Jan 2020

On Demand Nanoscale Phase Manipulation Of Vanadium Dioxide By Scanning Probe Lithography, Dustin Schrecongost

Graduate Theses, Dissertations, and Problem Reports

This dissertation focuses on nanoscale phase manipulations of Vanadium Dioxide. Nanoscale control of material properties is a current obstacle for the next generation of optoelectronic and photonic devices. Vanadium Dioxide is a strongly correlated material with an insulator-metal phase transition at approximately 345 K that generates dramatic electronic and optical property changes. However, the development of industry device application based on this phenomenon has been limited thus far due to the macroscopic scale and the volatile nature of the phase transition. In this work these limitations are assessed and circumvented.

A home-built, variable temperature, scanning near-field optical microscope was engineered …


Ultrafast Optical Properties Of La0.7sr0.3mno3 Thin Films, Saeed Yousefi Sarraf Jan 2020

Ultrafast Optical Properties Of La0.7sr0.3mno3 Thin Films, Saeed Yousefi Sarraf

Graduate Theses, Dissertations, and Problem Reports

Thin film solids often exhibit different physical properties in the ultra-thin regime. Enhancement of surface to bulk ratio results in the domination of surface/interface related phenomena such as surface recombination. Moreover, in the ultra-thin regime, quantum size and quantum confinement effects can alter the band gap of the system and constrain the strain wave propagation in the thin film. Ultrafast properties of solids can also be drastically altered in the ultra-thin regime due to the aforementioned phenomena. Experimentally, observation of these phenomena is challenging due to the insufficient material to absorb and interact with the electromagnetic wave. This dissertation addresses …