Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Physics

Volumetric Imaging Using The Pupil-Matched Remote Focusing Technique In Light-Sheet Microscopy, Sayed Hassan Dibaji Foroushani Dec 2023

Volumetric Imaging Using The Pupil-Matched Remote Focusing Technique In Light-Sheet Microscopy, Sayed Hassan Dibaji Foroushani

Optical Science and Engineering ETDs

ABSTRACT

The dissertation explores innovative techniques in light sheet microscopy, a pivotal tool in biomedical imaging, to enhance its speed, resolution, and efficiency in capturing dynamic biological processes. Light sheet microscopy allows for quick 3D imaging of biological specimens ranging from cells to organs with high spatiotemporal resolution, large field-of-view, and minimal damage, making it vital for in vivo imaging.

The first project introduces a novel optical concept designed to optimize Axially Swept Light Sheet Microscopy (ASLM). This technique is crucial for imaging specimens ranging from live cells to chemically cleared organs due to its versatility across different immersion media. …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin Dec 2022

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin

Optical Science and Engineering ETDs

The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.

To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …


Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer Aug 2022

Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer

Optical Science and Engineering ETDs

Results presented here examine the effect of changing gas pressure on the radio frequency (RF) emissions of an ultrashort pulse laser filament plasma and how those emissions vary longitudinally in the laser focal region. We use a WR284 rectangular waveguide with a 1.5 cm hole that allows the beam through. A 3.2 GHz microwave signal is emitted in the waveguide, and signals are received through a waveguide-to-coax antenna connected to an HP8470B Schottky diode. By enabling and disabling the 3.2 GHz signal, we measure both the self-emitted RF from a USPL filament and subsequently the degree of attenuation a filament …


Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell Jul 2022

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell

Optical Science and Engineering ETDs

We describe a novel pulsed magnetic gradiometer based on the optical interference of sidebands generated using two spatially separated alkali vapor cells. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with Rubiduim 87 atoms in a coherent superposition of magnetically sensitive hyperfine ground states. First, experimental evidence of the sideband process is described for both steady-state and pulsed operation. Then, a theoretical framework is developed that accurately models sideband generation based on density matrix formalism. The gradiometer is then constructed using two spatially separated vapor cells, and a beat-note is generated. The …


Fiesta And Shock-Driven Flows, Brian E. Romero Jul 2022

Fiesta And Shock-Driven Flows, Brian E. Romero

Mechanical Engineering ETDs

In this study, the interaction of a shock with various gas and particle interfaces is analyzed through simulations using a new, GPU capable, multi-species flow solver, FIESTA (Fast, Interface Evolution, Shocks, and Transport in the Atmosphere), de- veloped for this research. The cases studied include the interaction between a shock and i) a two-dimensional (2D), circular cloud of a dense gas; ii) a 2D curtain of a dense gas; iii) a three-dimensional (3D) cylinder of a dense gas, and iv) a 3D curtain of solid particles.

In simulations of a 2D gas curtain and a 3D gas column, the curtain …


Examination Of Ionization In Cesium Diode Pumped Alkali Lasers With An Ion Chamber Diagnostic, Benjamin Oliker May 2022

Examination Of Ionization In Cesium Diode Pumped Alkali Lasers With An Ion Chamber Diagnostic, Benjamin Oliker

Optical Science and Engineering ETDs

Diode pumped alkali lasers (DPALs) are leading candidates for future high power applications, with many potential utilities for the military, aerospace, communications, and scientific diagnostics. A critical step in their development is measurement and understanding of unwanted ionization processes that occur inside the laser, which decrease efficiency, reduce the usable alkali population, and increase heat load. In this dissertation, direct measurement of the ionization rate of a cesium DPAL gain medium are made for the first time, via application of an ion chamber diagnostic. Results will demonstrate that the rate of ionization is slow compared to pump absorption, with a …


Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache Jan 2022

Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with 84 co-authors from 19 countries.


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman Dec 2021

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer Dec 2021

Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer

Optical Science and Engineering ETDs

Filamentation in air is a phenomenon that has been extensively investigated for the last two decades. At sufficiently high intensity, even air is a nonlinear medium. These intensities are reached with ultrashort pulses (50 to 100 fs) of more than 1 J energy, which self-focus in air, reach ionizing intensities of oxygen and nitrogen, creating a plasma that defocuses the beam. The air filament is a self-induced waveguide resulting from a balance of focusing and defocusing. In this work new techniques were developed to visualize and analyze this phenomenon through its emission, in particu- lar the UV emission of the …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Optimization And Characterization Of Doped Optical Fibers For Radiation Balanced Fiber Laser And Amplifier, Mostafa Peysokhan May 2021

Optimization And Characterization Of Doped Optical Fibers For Radiation Balanced Fiber Laser And Amplifier, Mostafa Peysokhan

Optical Science and Engineering ETDs

Due to the reliability, compactness, low maintenance costs, superior performance, and versatility of fiber lasers and amplifiers, they are commonly employed in scientific and directed energy applications. Among all kinds of fiber lasers and amplifiers, high-power, Yb-dopped fiber lasers and amplifiers have been extensively researched to achieve higher output powers. One of the major hindrances to achieving higher powers with adequate stability and efficiency in high power performance is heat generated in the fiber lasers and amplifiers' core. The Radiation Balanced Laser (RBL) is a viable technique for heat mitigation has been proposed by S.~Bowman in 1995. RBL technique is …


Heterogeneously Integrated Photonic Modulators And High-Volume Manufacturing Of Related Technologies, Nicholas Adam Boynton Apr 2021

Heterogeneously Integrated Photonic Modulators And High-Volume Manufacturing Of Related Technologies, Nicholas Adam Boynton

Electrical and Computer Engineering ETDs

Silicon photonics is an attractive approach to cost-effective integrated optics due to the infrastructure established for silicon CMOS electronics. The material properties of silicon however are not ideal for optical devices. Specifically, silicon lacks the ability to easily produce light-emitting devices due to its indirect bandgap, and has a centro-symmetric crystal structure which does not facilitate the Pockels effect required for linear modulation. Conversely, lithium niobate is an excellent optical material due to its strong Pockels effect but, is a notoriously difficult material to process. One method of simultaneously overcoming the material limitations of silicon and the fabrication limitations of …


On The Dynamic Generation Of Megagauss-Level Magnetic Fields On 100-Ns Timescales To Stabilize And Magnetize Pulsed-Power-Driven Liner Implosions, Gabriel A. Shipley Apr 2021

On The Dynamic Generation Of Megagauss-Level Magnetic Fields On 100-Ns Timescales To Stabilize And Magnetize Pulsed-Power-Driven Liner Implosions, Gabriel A. Shipley

Electrical and Computer Engineering ETDs

This dissertation presents analysis of experiments and simulations executed to develop the auto-magnetizing liner concept (AutoMag) for use as an alternative premagnetization mechanism for MagLIF. Tests of each stage of AutoMag (magnetization, dielectric breakdown, and implosion) were executed on the Mykonos accelerator and the Z accelerator. Experiments demonstrate strong peak axial magnetic field production (20 – 150 T), dielectric breakdown initiation that depends on global induced electric field across the target, and a level of cylindrical implosion uniformity high enough to be useful for prospective fusion-fuel-filled (auto-magnetized MagLIF) experiments.

This dissertation also presents detailed simulations of the Solid Liner Dynamic …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani Jul 2020

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same mode-locked …


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr Jul 2020

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the …


Target Control Of Networked Systems, Isaac S. Klickstein Apr 2020

Target Control Of Networked Systems, Isaac S. Klickstein

Mechanical Engineering ETDs

The control of complex networks is an emerging field yet it has already garnered interest from across the scientific disciplines, from robotics to sociology. It has quickly been noticed that many of the classical techniques from controls engineering, while applicable, are not as illuminating as they were for single systems of relatively small dimension. Instead, properties borrowed from graph theory provide equivalent but more practical conditions to guarantee controllability, reachability, observability, and other typical properties of interest to the controls engineer when dealing with large networked systems. This manuscript covers three topics investigated in detail by the author: (i) the …


Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert Apr 2020

Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Coulombic And Non-Coulombic Effects Of Single And Overlapping Electric Double Layers With Surface Charge Regulation, Raviteja Vangara Dec 2019

Coulombic And Non-Coulombic Effects Of Single And Overlapping Electric Double Layers With Surface Charge Regulation, Raviteja Vangara

Chemical and Biological Engineering ETDs

The physical origin of charged interfaces involving electrolyte solutions is in the thermodynamic equilibrium between the surface reactive groups and certain dissolved ionic species in the bulk. This equilibrium is very strongly dependent on the precise local density of these species, also known as potential determining ions in the solution. The latter, however, is determined by the overall solution structure, which is dominated by the large number of solvent molecules relative to all solutes. Hence, the solvent contribution to the molecular structure is a crucial factor that determines the properties of electric double layers. Models that explicitly account for the …


Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh Nov 2019

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh

Optical Science and Engineering ETDs

In this dissertation we demonstrate a new structure based on waveguide coupling atop a silicon wafer using a chirped grating to provide the dispersion that leads to a high-resolution, compact, fully integrable and CMOS-compatible spectrometer. Light is both analyzed and detected in a single, completely monolithic component which enables realizing a high-resolution portable spectrometer with an extremely compact footprint. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide on top of a silicon wafer. Grating regions are fabricated on the top cladding of the waveguide. The input light is incident on a chirped grating …


Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang Nov 2019

Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang

Optical Science and Engineering ETDs

The properties of localized surface plasmons (LSP) have been broadly utilized for chemical sensing, surface enhanced Raman spectroscopy, biomedical imaging and photothermal treatments. By exploiting well-established plasmonic effects, the spectroscopic investigation of intriguing quantum phenomena, such as excitonic interband and intersubband (ISB) transitions in semiconductor heterostructures, was examined and extended in both far- and near-field optical measurements. For far-field characterization, we used colloidal plasmonic Au nanorods (AuNRs) to increase the quantum efficiency of InGaAs/GaAs single quantum well. By analyzing the temperature-dependent photoluminescence enhancement as a function of GaAs capping layer thickness, we attributed the mechanism of the LSP enhancement to …


Experimental Testing Of A 3d-Printed Metamaterial Slow Wave Structure For High Power Microwave Generation, Antonio B. De Alleluia Nov 2019

Experimental Testing Of A 3d-Printed Metamaterial Slow Wave Structure For High Power Microwave Generation, Antonio B. De Alleluia

Electrical and Computer Engineering ETDs

A metamaterial (MTM) high power microwave (HPM) vacuum electron device (VED) was developed using 3D printing technology. The specific geometric pattern of the source can produce both negative permittivity and permeability to interact with a relativistic electron beam. The electron beam is generated using a pulsed electron accelerator with a maximum energy of 700 keV and lasting approximately 16 ns. The design of this novel VED consists of a circular waveguide loaded with complementary split-ring resonators in a linear periodic arrangement in which the relativistic beam travels guided by a magnetic field. The electrons interact with the MTM producing electromagnetic …


A Harmless Wireless Quantum Alternative To Cell Phones Based On Quantum Noise, Florentin Smarandache, Robert Neil Boyd, Victor Christianto Sep 2019

A Harmless Wireless Quantum Alternative To Cell Phones Based On Quantum Noise, Florentin Smarandache, Robert Neil Boyd, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

In the meantime we know that 4G and 5G technologies cause many harms to human health. Therefore, here we submit a harmless wireless quantum alternative to cell phones. It is our hope that this alternative


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin Jul 2019

Computational Investigation Of The Interactions Between Bioactive Compounds And Biological Assemblies, Tye D. Martin

Biomedical Engineering ETDs

Small, biologically active molecules with unique properties and applications are potential solutions to a wide range of threats to global health including infectious agents and neurodegenerative disease. Experimental studies on a class of oligomeric p-phenylene ethynylenes (OPEs) have shown potential both as bioactive antimicrobials and fluorescent sensing agents for tracking amyloid-β (Aβ) aggregates found in Alzheimer’s Disease (AD). A second type of small molecule with potential applications in AD therapy, curcumin, has been found to interfere with Aβ fibril growth. Curcumin also attenuates Aβ-membrane interactions and Aβ toxicity. Our goal has been to use computational techniques to better understand the …