Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

2009

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 59

Full-Text Articles in Physics

Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley Dec 2009

Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley

Theses and Dissertations

A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a flow rate of 300 cm3/min was collected at 1 cm−1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of water, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A single-temperature …


Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley Dec 2009

Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley

Physics

A magneto-optical trap, or MOT, is a device that traps atoms between three pairs of opposing perpendicular laser beams for cooling the atoms to temperatures near absolute zero. The MOT uses Doppler cooling and a magnetic quadrupole field to trap the atoms; in our case, Rb87 atoms. In the future, the MOT will be used in experiments pertaining to the advancement of quantum computing. In this paper, I explain some of the processes required for construction and operation of the MOT.


Pair Creation Rates For One-Dimensional Fermionic And Bosonic Vacua, T Cheng, M R. Ware, Q Su, Rainer Grobe Dec 2009

Pair Creation Rates For One-Dimensional Fermionic And Bosonic Vacua, T Cheng, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the …


Simulations Of The Dipole-Dipole Interaction Between Two Spatially Separated Groups Of Rydberg Atoms, Thomas J. Carroll, Christopher Daniel, Leah Hoover, Timothy Sidie, Michael W. Noel Nov 2009

Simulations Of The Dipole-Dipole Interaction Between Two Spatially Separated Groups Of Rydberg Atoms, Thomas J. Carroll, Christopher Daniel, Leah Hoover, Timothy Sidie, Michael W. Noel

Physics and Astronomy Faculty Publications

The dipole-dipole interaction among ultracold Rydberg atoms is simulated. We examine a general interaction scheme in which two atoms excited to the x and x states are converted to y and y states via a Förster resonance. The atoms are arranged in two spatially separated groups, each consisting of only one species of atom. We monitor the state mixing by recording the fraction of atoms excited to the y state as the distance between the two groups is varied. With zero detuning a many-body effect that relies on always resonant interactions causes the state mixing to have a finite range. …


Fragmentation Properties Of Three-Membered Ring Heterocyclic Molecules By Partial Ion Yield Spectroscopy: C2h4o And C2h4s, Wayne C. Stolte, I. Dumitriu, S-W Yu, Gunnar Ohrwall, Maria Novella Piancastelli, Dennis W. Lindle Nov 2009

Fragmentation Properties Of Three-Membered Ring Heterocyclic Molecules By Partial Ion Yield Spectroscopy: C2h4o And C2h4s, Wayne C. Stolte, I. Dumitriu, S-W Yu, Gunnar Ohrwall, Maria Novella Piancastelli, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

We investigated the photofragmentation properties of two three-membered ring heterocyclic molecules, C2H4O and C2H4S, by total and partial ion yield spectroscopy. Positive and negative ions have been collected as a function of photon energy around the C 1s and O 1s ionization thresholds in C2H4O, and around the S 2p and C 1s thresholds in C2H4S. We underline similarities and differences between these two analogous systems. We present a new assignment of the spectral features around the C K-edge and the sulfur L2 …


Measurements Of Electron Density, Temperature And Photoionization Cross Sections Of The Excited States Of Neon In A Discharge Plasma, Shaukat Mahmood, Nek Shaikh, M. Kalyar, Naveed Piracha, M. Baig Oct 2009

Measurements Of Electron Density, Temperature And Photoionization Cross Sections Of The Excited States Of Neon In A Discharge Plasma, Shaukat Mahmood, Nek Shaikh, M. Kalyar, Naveed Piracha, M. Baig

Naveed K. Piracha

In the present work emission and absorption spectroscopy have been used to determine the plasma parameters of neon in a hollow cathode discharge lamp. The excitation temperature is determined using the intensity ratio method and Boltzmann’s plot method whereas the electron density is determined from the Stark broadening of the spectral lines. The behavior of the optogalvanic signal as a function of laser energy has been studied for three transitions from the 2p53s [1/2]2 metastable state following ΔJ=ΔK=0, ±1 dipole selection rules. The saturation technique has been used to measure the photoionization cross section from three intermediate states 2p53p′ [1/2]1, …


Absolute Nitrogen Atom Density Measurements By Two-Photon Laser-Induced Fluorescence Spectroscopy In Atmospheric Pressure Dielectric Barrier Discharges Of Pure Nitrogen, Et-Touhami Es-Sebbar, Christian Sarra-Bournet, Nicolas Naudé, Françoise Massines, Nicolas Gherardi Oct 2009

Absolute Nitrogen Atom Density Measurements By Two-Photon Laser-Induced Fluorescence Spectroscopy In Atmospheric Pressure Dielectric Barrier Discharges Of Pure Nitrogen, Et-Touhami Es-Sebbar, Christian Sarra-Bournet, Nicolas Naudé, Françoise Massines, Nicolas Gherardi

Dr. Et-touhami Es-sebbar

In this paper, two-photon absorption laser induced fluorescence spectroscopy is used to follow the nitrogen atom density in flowing dielectric barrier discharges fed with pure nitrogen and operating at atmospheric pressure. Two different dielectric barrier discharge regimes are investigated: the Townsend regime, which is homogeneous although operating at atmospheric pressure, and the more common filamentary regime. In both regimes, densities as high as 3x1014 /cm3 are detected. However, the N atoms kinetic formation depends on the discharge regime. The saturation level is reached more rapidly with a filamentary discharge. For a given discharge regime, the N atom density depends strongly …


Contributions To The Development Of The S.E.T.U.P. (Experimental And Theoretical Simulations Useful For Planetology) Project, E. Arzoumanian, C. Romanzin, M-C. Gazeau, Et. Es-Sebbar, A. Jolly, S. Perrier, Y. Benilan Oct 2009

Contributions To The Development Of The S.E.T.U.P. (Experimental And Theoretical Simulations Useful For Planetology) Project, E. Arzoumanian, C. Romanzin, M-C. Gazeau, Et. Es-Sebbar, A. Jolly, S. Perrier, Y. Benilan

Dr. Et-touhami Es-sebbar

No abstract provided.


Multiwavelength Studies For Titan's Atmospheric Composition Analysis, Y. Benilan, Et. Es-Sebbar, N. Fray, M-C. Gazeau, A. Jolly, M. Schwell, J. Guillemin Oct 2009

Multiwavelength Studies For Titan's Atmospheric Composition Analysis, Y. Benilan, Et. Es-Sebbar, N. Fray, M-C. Gazeau, A. Jolly, M. Schwell, J. Guillemin

Dr. Et-touhami Es-sebbar

Titan's atmosphere mainly made of nitrogen and methane is rich in organic molecules. Hydrocarbons are formed from the photolytic dissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter need constrains for vertical profiles of organic compounds from the high thermosphere down to the low stratosphere as well as photodissociation rates. Those profiles over the entire atmosphere can be retrieved from Cassini observations, in particular by limb sounding, coupling infrared and ultraviolet spectroscopy. However, …


Vuv Photostability Of Prebiotic Species, M. Schwell, Y. Bénilan, M.-C. Gazeau, N. Fray, A. Jolly, Et. Es-Sebbar, N. Champion, S. Leach, H. W Jochims, H. Baumgärtel, E. Rühl Sep 2009

Vuv Photostability Of Prebiotic Species, M. Schwell, Y. Bénilan, M.-C. Gazeau, N. Fray, A. Jolly, Et. Es-Sebbar, N. Champion, S. Leach, H. W Jochims, H. Baumgärtel, E. Rühl

Dr. Et-touhami Es-sebbar

No abstract provided.


S.E.T.U.P. Experimental And Theoretical Simulations Useful For Planetology- Related Studies In The Frame Of A Program Of Titan’S Atmosphere Laboratory Simulations, M.-C. Gazeau, Et. Es-Sebbar, E. Arzoumanian, C. Romanzin, A. Jolly, S. Perrier, Y. Bénilan Sep 2009

S.E.T.U.P. Experimental And Theoretical Simulations Useful For Planetology- Related Studies In The Frame Of A Program Of Titan’S Atmosphere Laboratory Simulations, M.-C. Gazeau, Et. Es-Sebbar, E. Arzoumanian, C. Romanzin, A. Jolly, S. Perrier, Y. Bénilan

Dr. Et-touhami Es-sebbar

No abstract provided.


Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon Sep 2009

Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon

Chemistry and Biochemistry Faculty Research

We present a combined theoretical and experimental study of molecular field effects on molecular core levels. Polarization-dependent resonant inelastic x-ray scattering is observed experimentally after resonant K-shell excitation of CF3Cl and HCl. We explain the linear dichroism observed in spin-orbit level intensities as due to molecular field effects, including singlet-triplet exchange, and interpret this behavior in terms of population differences in the 2px,y,z inner-shell orbitals. We investigate theoretically the different factors that can affect the electronic populations and the dynamical R dependence of the spin-orbit ratio. Finally, the results obtained are used to interpret the L-shell …


Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan Aug 2009

Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan

Doctoral Dissertations

The objectives of this dissertation are to advance and broaden the traditional average eye modeling technique by two extensions: 1) population-based and personalized eye modeling for both normal and diseased conditions, and 2) demonstration of applications of this pioneering eye modeling.The first type of representative eye modeling can be established using traditional eye modeling techniques with statistical biometric information of the targeted population. Ocular biometry parameters can be mathematically assigned according to the distribution functions and correlations between parameters. For example, the axial dimension of the eye relates to age, gender, and body height factors. With the investigation results from …


Fluorescence Polarization Of Atomic, Dissociated Atomic, And Molecular Transitions Induced By Spin-Polarized Electron Impact, Jack W. Maseberg Aug 2009

Fluorescence Polarization Of Atomic, Dissociated Atomic, And Molecular Transitions Induced By Spin-Polarized Electron Impact, Jack W. Maseberg

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Excitation of atoms by spin-polarized electron impact yields fluorescence that can generally exhibit both linear and circular polarization. For experiments where the scattered electrons are not detected, symmetry requires that the electron beam be spin polarized in order for non-zero circular polarization to be observed. Extensive theoretical and experimental investigations have been performed regarding fluorescence polarizations (Stokes parameters) resulting from spin-polarized electron impact excitation of atoms. Measurement of fluorescence polarization provides insight into the angular momentum coupling that exists in the atomic state of interest. It also enables the measurement of electron spin polarization and experimental benchmarking of theoretical atomic …


Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart Aug 2009

Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart

All Theses

The human ribosome is an RNA-protein complex responsible for protein synthesis in the cell. Crystal structures of bacterial ribosomes solved to date depict no protein sidechains within the catalytic core, or peptidyl transferase center (PTC). This region of the human ribosome comprises approximately 230 highly conserved nucleotides. Notably, several of the uridine bases clustered within the human PTC are post-transcriptionally modified to pseudouridines, as compared with bacterial analogues. Pseudouridines are base-rotated uridines, linked to their sugar moieties through C5-C1' linkages, affording additional hydrogen-bond donor groups at the N1 position of their rings. A connection was recently made between the absence …


Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis Jul 2009

Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis

Faculty of Engineering - Papers (Archive)

An unusual concept for a simple and inexpensive terahertz source is presented: unpeeling adhesive tape. The observed spectrum of this terahertz radiation exhibits a peak at 2 THz and a broader peak at 18 THz. The radiation is not polarized. The mechanism of terahertz radiation is tribocharging of the adhesive tape and subsequent discharge, possibly bremsstrahlung with absorption or energy density focusing during the dielectric breakdown of a gas. The accompanying optical emission is also a consequence of tribocharging.


Thermodynamic Stability Of Transition States In Nanosystems, Alexander Umantsev Jul 2009

Thermodynamic Stability Of Transition States In Nanosystems, Alexander Umantsev

Chemistry and Physics Faculty Working Papers

We present a theory which shows that, in a closed system of fixed volume capable of undergoing a phase transition, the transition state can be thermodynamically stable against the bulk phases if a certain material parameters criterion is fulfilled. In a small system below the critical size the transition state turns into a globally stable phase that can be observed experimentally. This effect is analogous to stabilization of icosahedral structures in clusters of certain sizes and energies. Stabilization of the transition state in small systems of limited resources allows us to conjecture that, in the case of a melting/freezing transition …


Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe Jul 2009

Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe

Faculty publications – Physics

We examine the spontaneous breakdown of the matter vacuum triggered by an external force of arbitrary strength and spatial and temporal variations. We derive a nonperturbative framework that permits the computation of the complete time evolution of various multiple electron-positron pair probabilities. These time-dependent probabilities can be computed from a generating function as well as from solutions to a set of ratelike equations with coupling constants determined by the single-particle solutions to the time-dependent Dirac equation. This approach might be of relevance to the planned experiments to observe for the first time the laser-induced breakdown process of the vacuum.


The Study Of The 1s4–2pj Optogalvanic Transients In A Neon Discharge Plasma, Naveed Piracha, R. Feaver, T. Gilani, Rizwan Ahmed, R. Ali, M. Baig Jun 2009

The Study Of The 1s4–2pj Optogalvanic Transients In A Neon Discharge Plasma, Naveed Piracha, R. Feaver, T. Gilani, Rizwan Ahmed, R. Ali, M. Baig

Naveed K. Piracha

Time dependent optogalvanic signals induced by the 1s4→2pj laser excitations have been studied in neon DC plasma. The decay rates related to all the four 1si levels have been derived by fitting the waveforms with a mathematical rate equation model. The temporal signatures of three transitions namely 638.3, 650.7 and 724.5nm related to the 2p7, 2p8 and 2p10 upper levels, respectively, have been found to be different from the rest of the transitions. We relate these effects to the population redistribution of decaying channels and to the processes responsible for the optogalvanic effect.


Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori Jun 2009

Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori

All HMC Faculty Publications and Research

Analysis of acoustic phonons modulated due to the surfaces of a free-standing semiconductor plate and their deformation-potential interaction with electrons are presented. The form factor for electron-modulated acoustic phonon interaction is formulated and analyzed in detail. The form factor at zero in-plane phonon wave vector satisfies sum rules regardless of electron wave function. The form factor is larger than that calculated using bulk phonons, leading to a higher scattering rate and lower electron mobility. When properly normalized, the form factors lie on a universal curve regardless of plate thickness and material.


Characterization Of An N2 Flowing Microwave Post-Discharge By Oes Spectroscopy And Determination Of Absolute Ground-State Nitrogen Atom Densities By Talif, Et. Es-Sebbar, Y. Benilan, A. Jolly, M-C. Gazeau Jun 2009

Characterization Of An N2 Flowing Microwave Post-Discharge By Oes Spectroscopy And Determination Of Absolute Ground-State Nitrogen Atom Densities By Talif, Et. Es-Sebbar, Y. Benilan, A. Jolly, M-C. Gazeau

Dr. Et-touhami Es-sebbar

A flowing microwave post-discharge source sustained at 2.45 GHz in pure nitrogen has been investigated by optical emission spectroscopy (OES) and two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. Variations of the optical emission along the post-discharge (near, pink and late afterglow) have been studied and the gas temperature has been determined. TALIF spectroscopy has been used in the late afterglow to determine the absolute ground-state nitrogen atomic densities using krypton as a reference gas. Measurements show that the microwave flowing post-discharge is an efficient source of N (4S) atoms in late afterglow. In our experimental conditions, the maximum N (4S) density …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Experimental Studies Of Nacs, Seth T. Ashman, C. M. Wolfe, J. P. Huennekens May 2009

Experimental Studies Of Nacs, Seth T. Ashman, C. M. Wolfe, J. P. Huennekens

Engineering & Physics Faculty Publications

We present experimental studies of excited electronic states of the NaCs molecule that are currently underway in our laboratory. The optical-optical double resonance method is used to obtain Doppler-free excitation spectra for several excited states. These data are being used to obtain RydbergKlein-Rees (RKR) or Inverse Perturbation Approach (IPA) potential curves for these states. We are also trying to map the bound portion of the 1(a) 3Σ + potential using resolved laser-induced fluorescence and Fourier transform spectroscopy to record transitions into the shallow well. Bound-free spectra from single ro-vibrational levels of electronically excited states to the repulsive wall of the …


Polarization Spectroscopy And Collisions In Nak, Seth T. Ashman, C. M. Wolfe, J. Huennekens, B. Beser, J. Bai, A. M. Lyyra May 2009

Polarization Spectroscopy And Collisions In Nak, Seth T. Ashman, C. M. Wolfe, J. Huennekens, B. Beser, J. Bai, A. M. Lyyra

Engineering & Physics Faculty Publications

We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A1Σ +(v=16, J) ← X1Σ +(v=0, J ± 1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3 1Π(v=8, J 0 ± 1) ← A1Σ +(v=16, J 0 ) transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded …


Imaging Second-Harmonic Radiation And Scattering Patterns In Zno Micro/Nanostructures, Katrina Marie Geren May 2009

Imaging Second-Harmonic Radiation And Scattering Patterns In Zno Micro/Nanostructures, Katrina Marie Geren

Graduate Theses and Dissertations

The optical characteristics of ZnO nanostructures have recently garnered interest due to the inclusion of these structures in many nanoscale optical and optoelectronic devices. This thesis will address several characteristics involving second harmonic generation and scattering in ZnO nano- and microstructures. A method will be presented for determining the nonlinear coefficients of the second order susceptibility in a single ZnO rod. This method uses transmission geometry where previous methods have employed back-reflected irradiation. The nonlinear coefficients found using this new technique were consistent with previous data from similar structures. Models will be presented for predicting the second harmonic scattering patterns …


Simulation Of Ultrashort Laser Pulse Propagation And Plasma Generation In Nonlinear Media. Dissertation, Jeremy Gulley Apr 2009

Simulation Of Ultrashort Laser Pulse Propagation And Plasma Generation In Nonlinear Media. Dissertation, Jeremy Gulley

Jeremy R. Gulley

In this dissertation, a modified nonlinear Schrödinger equation is derived, which describes the propagation of ultrashort laser pulses through nonlinear materials in which plasma generation and laser-induced damage can occur. Differences between this model and models currently used in the literature are investigated and analyzed by numerical simulations. Ultrafast laser-induced material modification is investigated using this method by simulating the propagation of fully 3+1D (3 spatial plus 1 time dimension) laser pulses, which are numerically constructed from experimentally measured beam profiles and pulse shape data. The latest of these investigations reveals that standard rate-equation models for the free-electron plasma generation …


Oscillator Strength Measurements Of The 5s6s 1s0→5snp 1p1 Rydberg Transitions Of Strontium, S. U. Haq, M. A. Kalyar, M. Rafiq, R. Ali, Naveed K. Piracha, M. A. Baig Apr 2009

Oscillator Strength Measurements Of The 5s6s 1s0→5snp 1p1 Rydberg Transitions Of Strontium, S. U. Haq, M. A. Kalyar, M. Rafiq, R. Ali, Naveed K. Piracha, M. A. Baig

Physics

We report the experimentally determined oscillator strengths for the 5s6s 1S0→5snp 1P1 Rydberg transitions of strontium using two-step excitation in conjunction with a thermionic diode ion detector. The absolute photoionization cross section from the 5s6s 1S0 excited state has been determined by adjusting the polarization vector of the ionizing laser beam parallel, perpendicular, and at the magic angle with respect to that of the exciting dye laser. The measured absolute value of the photoionization cross section 0.9±0.2 Mb at the 5s threshold is used to extract the f values of the 5s6s 1 …


Spiral Patterns In Liquid Crystals, Gavin Hartnett Apr 2009

Spiral Patterns In Liquid Crystals, Gavin Hartnett

Honors Capstone Projects - All

Abstract not Included


Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake Apr 2009

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake

Physics Theses & Dissertations

A partially ionized gas is referred to as either a plasma or a discharge depending on the degree of ionization. The term discharge is usually applied to a weakly ionized gas, i.e. mostly neutrals, where as a plasma usually has a larger degree of ionization. To characterize a discharge the plasma parameters, such as the rotational temperature, vibrational temperature, and electron density, must be determined. Detailed characterization of supersonic flowing discharges is important to many applications in aerospace and aerodynamics. One application is the use of plasma-assisted hydrogen combustion devices to aid in supersonic combustion. In conditions close to the …


Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott Mar 2009

Analysis And Application Of The Bi-Directional Scatter Distribution Function Of Photonic Crystals, Robert B. Lamott

Theses and Dissertations

Photonic crystals (PCs) are periodic structures built from materials with different refractive indices repeated at sub-wavelength intervals, which results in unusual optical characteristics, including narrowband laser protection, and zero reflectance and high absorption anomalies. Most of the research into the optical properties of PCs has concentrated only on the small range of wavelengths and angles where these effects occur. To better understand where all light leaving a PC is scattered, a Complete Angle Scatter Instrument was used to analyze the scatter from three Guided Mode Resonance Filters designed for laser protection. In the plane of incidence, measurements of the scatter …