Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 35 of 35

Full-Text Articles in Physics

Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner Dec 2012

Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner

Doctoral Dissertations

Molecular dynamics simulation has become an essential tool for scientific discovery and investigation. The ability to evaluate every atomic coordinate for each time instant sets it apart from other methodologies, which can only access experimental observables as an outcome of the atomic coordinates. Here, the utility of molecular dynamics is illustrated by investigating the structure and dynamics of fundamental models of cellulose fibers. For that, a highly parallel code has been developed to compute static and dynamical scattering functions efficiently on modern supercomputing architectures. Using state of the art supercomputing facilities, molecular dynamics code and parallelization strategies, this work also …


Laser-Atom Interactions: A Multiresolution Approach, Nicholas Eric Vence May 2012

Laser-Atom Interactions: A Multiresolution Approach, Nicholas Eric Vence

Doctoral Dissertations

Isolated, attosecond laser pulses have allowed real-time measurement and control of electrons on atomic time scales. We present an explicit time-evolution scheme solving the time dependent Schro ̈dinger equation, which employs an adaptive, discontinuous, spectral-element basis that automatically refines to accommodate the requested precision providing efficient computation across many length scales in multiple dimensions. This method is illustrated through time evolution studies of single electron atoms and molecular ions in three and four dimensions under the influence of intense, few-cycle laser pulses.


Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras May 2012

Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras

Doctoral Dissertations

A key issue for the successful performance of current and future fusion reactors is understanding chemical and physical processes at the Plasma Material Interface (PMI). The material surfaces may be bombarded by plasma particles in a range of impact energies (1 eV - a few keV) and kept at a range of temperatures (300 - 1000 K). The dominant processes at the PMI are reflection and retention of impacting particles and sputtering (chemical and physical). Sputtering leads to surface erosion and pollution of the plasma, both of which degrade reactor performance. Retention influences the recycling of the plasma, and in …


Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello Dec 2011

Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello

Doctoral Dissertations

The space simulation chambers at Arnold Engineering Development Complex (AEDC) allow for the testing and calibration of seeker sensors in cryogenic, high vacuum environments. During operation of these chambers, contaminant films can form on the components in the chamber and disrupt operation. Although these contaminant films can be composed of many molecular species, depending on the species outgassed by warm chamber components and any leaks or virtual leaks (pockets of gas trapped within a vacuum chamber) that may be present, water vapor is most common, and it will be the focus of this dissertation. In this dissertation, some properties of …


Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan Aug 2009

Optical Modeling Of Schematic Eyes And The Ophthalmic Applications, Bo Tan

Doctoral Dissertations

The objectives of this dissertation are to advance and broaden the traditional average eye modeling technique by two extensions: 1) population-based and personalized eye modeling for both normal and diseased conditions, and 2) demonstration of applications of this pioneering eye modeling.The first type of representative eye modeling can be established using traditional eye modeling techniques with statistical biometric information of the targeted population. Ocular biometry parameters can be mathematically assigned according to the distribution functions and correlations between parameters. For example, the axial dimension of the eye relates to age, gender, and body height factors. With the investigation results from …