Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

University of Nebraska - Lincoln

Keyword
Publication Year
Publication

Articles 1 - 30 of 384

Full-Text Articles in Physics

Ferroelectric Hafnia Surface In Action, Xia Hong Sep 2023

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg May 2023

Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg

Alexei Gruverman Publications

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of …


Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong Apr 2023

Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Capturing the structural changes during a molecular reaction with ultrafast electron diffraction (UED) requires a high spatiotemporal resolution and sufficiently high signal-to-noise to record the signals with high fidelity. In this dissertation, I have focused on the development of a tabletop gas phase keV-UED setup with a femtosecond temporal resolution. A DC electron gun was employed to generate electron pulses with a high repetition rate of 5 kHz. The space charge effect in the electron pulse was ameliorated by compressing the 90 keV electron pulse longitudinally with a time varying electric field in an RF cavity. The velocity mismatch between …


New Features In Landyne 5 - A Software Suite For Materials Characterization And Crystallography By Transmission Electron Microscopy, Xing-Zhong Li Jan 2023

New Features In Landyne 5 - A Software Suite For Materials Characterization And Crystallography By Transmission Electron Microscopy, Xing-Zhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Landyne software suite (version 5) includes fifteen standalone computer programs for materials characterization and crystallography by transmission electron microscopy [1]. A launcher interface is provided for users to access all components conveniently. The purpose of this software suite is twofold: i) as research tools to analyze experimental results, ii) as teaching tools to explore the varieties of electron diffraction methods and crystallographic image processing principles.

The Landyne suite previously included: PTable, an interactive periodic table of elements; SVAT, a structural visual and analytical tool; SAED and PCED, simulation and analysis of electron diffraction (spot and ring) patterns; QSAED and QPCED, …


Structural, Electronic, And Magnetic Properties Of Cofevge-Based Compounds: Experiment And Theory, Parashu Kharel, Zachary Lehmann, Gavin Baker, Lukas Stuelke, Shah R. Valloppilly, Paul M. Shand, Pavel V. Lukashev Jan 2023

Structural, Electronic, And Magnetic Properties Of Cofevge-Based Compounds: Experiment And Theory, Parashu Kharel, Zachary Lehmann, Gavin Baker, Lukas Stuelke, Shah R. Valloppilly, Paul M. Shand, Pavel V. Lukashev

Nebraska Center for Materials and Nanoscience: Faculty Publications

We have carried out a combined theoretical and experimental investigation of both stoichiometric and nonstoichiometric CoFeVGe alloys. In particular, we have investigated CoFeVGe, Co1.25Fe0.75VGe, Co0.75Fe1.25VGe, and CoFe0.75VGe bulk alloys. Our first principles calculations suggest that all four alloys show ferromagnetic order, where CoFeVGe, Co1.25Fe0.75VGe, and Co0.75Fe1.25VGe are highly spin polarized with spin polarization values of over 80%. However, the spin polarization value of CoFe0.75VGe is only about 60%. We have synthesized all four samples using arc melting and high-vacuum annealing …


Tem Studies Of A New Modulated Structure In Mn2Rusn Alloy And Intermetallic Phases In Fe3+XCo3–XTi2 (X = 0, 1, 2, 3) Alloys, Xing-Zhong Li, Shah R. Valloppilly Jan 2023

Tem Studies Of A New Modulated Structure In Mn2Rusn Alloy And Intermetallic Phases In Fe3+XCo3–XTi2 (X = 0, 1, 2, 3) Alloys, Xing-Zhong Li, Shah R. Valloppilly

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds are a remarkable class of intermetallic materials with wide-ranging and tunable properties. The Mn2RuSn Heusler compound was reported as an L21B-type cubic phase, a = 0.62195 nm, distinguishing from the original L21 structure (or L21A-type). The L21B-type structure is a disordered variant of the inverse Heusler structure, XA-type (Prototype-CuHg2Ti, space group No. 216, F4–3m).

In our recent work [1], we observed a new modulated structure derived from the XA-type structure and its orthogonal domains in the Mn2RuSn Heusler alloy. The structural characterization was carried out …


Entropy-Driven Structural Transition From Tetragonal To Cubic Phase: High Thermoelectric Performance Of Cucdinse3 Compound, Tingting Luo, Yihao Hu, Shi Liu, Fanjie Xia, Junhao Qiu, Haoyang Peng, Keke Liu, Quansheng Guo, Xingzhong Li, Dongwang Yang, Xianli Su, Jinsong Wu, Xinfeng Tang Jan 2023

Entropy-Driven Structural Transition From Tetragonal To Cubic Phase: High Thermoelectric Performance Of Cucdinse3 Compound, Tingting Luo, Yihao Hu, Shi Liu, Fanjie Xia, Junhao Qiu, Haoyang Peng, Keke Liu, Quansheng Guo, Xingzhong Li, Dongwang Yang, Xianli Su, Jinsong Wu, Xinfeng Tang

Nebraska Center for Materials and Nanoscience: Faculty Publications

Cu based chalcopyrite is an important class of thermoelectric materials with excellent electronic properties, however, the thermal conductivity is relatively high due to the simple tetragonal structure with highly ordered configuration on cation sites, limiting the thermoelectric performance. Herein, we realize that the modulation of entropy via alloying CdSe achieves the structural transition from tetragonal structure with ordered configuration on cations sites in CuInSe2 compound to cubic CuCdInSe3. CuCdInSe3 crystallizes in a zinc blende (ZnS) structure where Cu, Cd and In cations randomly occupy the Zn site with the occupancy fraction 1/3. This entropy driven order-disorder …


An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li Nov 2022

An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Contrast transfer function (CTF) is a vital function in transmission electron microscopy (TEM). It expresses to what extent amplitudes converted from the phase changes of the diffracted waves contribute to the TEM image, including the effects of lens aberrations. Simulation is very helpful to understand the application of the function thoroughly. In this work, we develop the CTFscope as a component in the Landyne software suite, to calculate the CTF with temporal and spatial dumping envelopes for conventional TEM and to extend it to various aberrations (up to fifth order) for aberration-corrected (AC)- TEM. It also includes effects on the …


Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong Oct 2022

Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong

Xia Hong Publications

We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to 23,000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for …


Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration Sep 2022

Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration

Department of Physics and Astronomy: Faculty Publications

A search is presented for a heavy W0 boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using protonproton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb−1 at a center-of-mass energy of 13TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are …


Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes Jun 2022

Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes

Martin Centurion Publications

Since the discovery of electron-wave duality, electron scattering instrumentation has developed into a powerful array of techniques for revealing the atomic structure of matter. Beyond detecting local lattice variations in equilibrium structures with the highest possible spatial resolution, recent research efforts have been directed towards the long sought-after dream of visualizing the dynamic evolution of matter in real-time. The atomic behavior at ultrafast timescales carries critical information on phase transition and chemical reaction dynamics, the coupling of electronic and nuclear degrees of freedom in materials and molecules, the correlation between structure, function and previously hidden metastable or nonequilibrium states of …


Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg Jun 2022

Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg

Alexei Gruverman Publications

Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, …


A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer Jan 2022

A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

A modulated structure derived from the inverse Heusler phase (the XA-type and the disordered variant L21B-type) has been observed in rapidly quenched Mn2RuSn ribbons. The powder X-ray diffraction pattern of the quenched ribbons can be indexed as an L21B-type structure. Electron diffraction patterns of the new structure mostly resemble those of the XA-type (and the disordered variant L21B-type) structure and additional reflections with denser spacing indicate a long periodicity. Orthogonal domains of the modulated structure were revealed by a selected-area electron diffraction pattern and the corresponding dark-field transmission electron microscopy images. The structure was …


Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel Jan 2022

Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel

Nebraska Center for Materials and Nanoscience: Faculty Publications

We have prepared the Heusler alloy CoFeV0.5Mn0.5Si in bulk form via arc melting. CoFeV0.5Mn0.5Si is ferromagnetic with a Curie temperature of 657 K. The longitudinal resistivity exhibits a minimum at 150 K, which is attributable to competition between quantum interference corrections at low temperatures and inelastic scattering at higher temperatures. The magnetoresistance (MR) is positive and nearly linear at low temperatures and becomes negative at temperatures close to room temperature. The positive MR in the quantum correction regime is evidence of the presence of the enhanced electron interaction as a contributor to …


What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?, Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter Dowben Jan 2022

What Happens When Transition Metal Trichalcogenides Are Interfaced With Gold?, Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter Dowben

Peter Dowben Publications

Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results …


Voltage Controlled Néel Vector Rotation In Zero Magnetic Field, Ather Mahmood, Will Echtenkamp, Mike Street, Jun Lei Wang, Shi Cao, Takashi Komesu, Peter Dowben, Pratyush Buragohain, Haidong Lu, Alexei Gruverman, Arun Parthasarathy, Shaloo Rakheja, Christian Binek Dec 2021

Voltage Controlled Néel Vector Rotation In Zero Magnetic Field, Ather Mahmood, Will Echtenkamp, Mike Street, Jun Lei Wang, Shi Cao, Takashi Komesu, Peter Dowben, Pratyush Buragohain, Haidong Lu, Alexei Gruverman, Arun Parthasarathy, Shaloo Rakheja, Christian Binek

Peter Dowben Publications

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse …


Quantum State Tomography Of Molecules By Ultrafast Diffraction, Ming Zhang, Shuqiao Zhang, Yanwei Xiong, Hankai Zhang, Anatoly A. Ischenko, Oriol Vendrell, Xiaolong Dong, Xiangxu Mu, Martin Centurion, Haitan Xu, R. J.Dwayne Miller, Zheng Li Dec 2021

Quantum State Tomography Of Molecules By Ultrafast Diffraction, Ming Zhang, Shuqiao Zhang, Yanwei Xiong, Hankai Zhang, Anatoly A. Ischenko, Oriol Vendrell, Xiaolong Dong, Xiangxu Mu, Martin Centurion, Haitan Xu, R. J.Dwayne Miller, Zheng Li

Martin Centurion Publications

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which …


Ferromagnetic Resonances In Single-Crystal Yttrium Iron Garnet Nanofilms Fabricated By Metal-Organic Decomposition, Szu Fan Wang, Kayetan Chorazewicz, Suvechhya Lamichhane, Ronald A. Parrott, Stefano Cabrini, Peter Fischer, Noah Kent, John H. Turner, Takayuki Ishibashi, Zachary Parker Frohock, Jacob J. Wisser, Peng Li, Ruthi Zielinski, Bryce Herrington, Yuri Suzuki, Mingzhong Wu, Keiko Munechika, Carlos Pina-Hernandez, Robert Streubel, Allen A. Sweet Oct 2021

Ferromagnetic Resonances In Single-Crystal Yttrium Iron Garnet Nanofilms Fabricated By Metal-Organic Decomposition, Szu Fan Wang, Kayetan Chorazewicz, Suvechhya Lamichhane, Ronald A. Parrott, Stefano Cabrini, Peter Fischer, Noah Kent, John H. Turner, Takayuki Ishibashi, Zachary Parker Frohock, Jacob J. Wisser, Peng Li, Ruthi Zielinski, Bryce Herrington, Yuri Suzuki, Mingzhong Wu, Keiko Munechika, Carlos Pina-Hernandez, Robert Streubel, Allen A. Sweet

Robert Streubel Papers

Tunable microwave and millimeter wave oscillators and bandpass filters with ultra-low phase noise play a critical role in electronic devices, including wireless communication, microelectronics, and quantum computing. Magnetic materials, such as yttrium iron garnet (YIG), possess ultra-low phase noise and a ferromagnetic resonance tunable up to tens of gigahertz. Here, we report structural and magnetic properties of single-crystal 60 and 130 nm-thick YIG films prepared by metal-organic decomposition epitaxy. These films, consisting of multiple homoepitaxially grown monolayers, are atomically flat and possess magnetic properties similar to those grown with liquid-phase epitaxy, pulsed laser deposition, and sputtering. Our approach does not …


Conformer-Specific Photochemistry Imaged In Real Space And Time, E. G. Champenois, D. M. Sanchez, J. Yang, J. P. Figueira Nunes, A. Attar, Martin Centurion, R. Forbes, M. Gühr, K. Hegazy, F. Ji, S. K. Saha, Y. Liu, M. F. Lin, D. Luo, B. Moore, X. Shen, M. R. Ware, Xijie Wang, T. J. Martínez, Thomas J. A. Wolf Oct 2021

Conformer-Specific Photochemistry Imaged In Real Space And Time, E. G. Champenois, D. M. Sanchez, J. Yang, J. P. Figueira Nunes, A. Attar, Martin Centurion, R. Forbes, M. Gühr, K. Hegazy, F. Ji, S. K. Saha, Y. Liu, M. F. Lin, D. Luo, B. Moore, X. Shen, M. R. Ware, Xijie Wang, T. J. Martínez, Thomas J. A. Wolf

Martin Centurion Publications

Conformational isomers (conformers) of molecules play a decisive role in biology and organic chemistry. However, experimental methods for investigating chemical reaction dynamics are typically not conformersensitive. We report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of a-phellandrene undergoing an electrocyclic ring-opening reaction. We directly imaged the evolution of a specific set of a-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide considerable detail of how conformation influences the time scale and quantum efficiency of photoinduced ring-opening reactions. …


Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben Oct 2021

Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben

Peter Dowben Publications

The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2 }2 (bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find …


Giant Transport Anisotropy In Res2 Revealed Via Nanoscale Conducting-Path Control, Dawei Li, Shuo Sun, Jingfeng Song, Ding-Fu Shao, Evgeny Y. Tsymbal, Stephen Ducharme, Xia Hong Sep 2021

Giant Transport Anisotropy In Res2 Revealed Via Nanoscale Conducting-Path Control, Dawei Li, Shuo Sun, Jingfeng Song, Ding-Fu Shao, Evgeny Y. Tsymbal, Stephen Ducharme, Xia Hong

Stephen Ducharme Publications

The low in-plane symmetry in layered 1T’-ReS2 results in strong band anisotropy, while its manifestation in the electronic properties is challenging to resolve due to the lack of effective approaches for controlling the local current path. In this work, we reveal the giant transport anisotropy in monolayer to four-layer ReS2 by creating directional conducting paths via nanoscale ferroelectric control. By reversing the polarization of a ferroelectric polymer top layer, we induce a conductivity switching ratio of >1.5 × 108 in the ReS2 channel at 300 K. Characterizing the domain-defined conducting nanowires in an insulating background shows that the …


Spontaneous Fluctuations In A Magnetic Fe/Gd Skyrmion Lattice, M. H. Seaberg, B. Holladay, S. A. Montoya, X. Y. Zheng, J. C.T. Lee, A. H. Reid, J. D. Koralek, L. Shen, V. Esposito, G. Coslovich, P. Walter, S. Zohar, V. Thampy, M. F. Lin, P. Hart, K. Nakahara, R. Streubel, S. D. Kevan, P. Fischer, W. Colocho, A. Lutman, F. J. Decker, E. E. Fullerton, M. Dunne, S. Roy, S. K. Sinha, J. J. Turner Sep 2021

Spontaneous Fluctuations In A Magnetic Fe/Gd Skyrmion Lattice, M. H. Seaberg, B. Holladay, S. A. Montoya, X. Y. Zheng, J. C.T. Lee, A. H. Reid, J. D. Koralek, L. Shen, V. Esposito, G. Coslovich, P. Walter, S. Zohar, V. Thampy, M. F. Lin, P. Hart, K. Nakahara, R. Streubel, S. D. Kevan, P. Fischer, W. Colocho, A. Lutman, F. J. Decker, E. E. Fullerton, M. Dunne, S. Roy, S. K. Sinha, J. J. Turner

Robert Streubel Papers

Magnetic skyrmions are topological spin textures that exhibit classical or quantum quasiparticle behavior. A substantial amount of research has occurred in this field, both because of their unique electromagnetic properties and potential application for future nonvolatile memory storage applications, as well as fundamental questions on their topology and unique magnetic phases. Here, we investigate the fluctuation properties of a magnetic Fe/Gd skyrmion lattice, using short-pulsed x rays. We first measure spontaneous fluctuations of the skyrmion lattice phase and find an inherent, collective mode showing an underdamped oscillation with a relaxation of a couple of nanoseconds. Further observations track the response …


High Sensitivity Multi-Axes Rotation Sensing Using Large Momentum Transfer Point Source Atom Interferometry, Jinyang Li, Gregório R. M. Da Silva, Wayne Cheng-Wei Huang, Mohamed Fouda, Jason Bonacum, Timothy L. Kovachy, Selim M. Shahriar Aug 2021

High Sensitivity Multi-Axes Rotation Sensing Using Large Momentum Transfer Point Source Atom Interferometry, Jinyang Li, Gregório R. M. Da Silva, Wayne Cheng-Wei Huang, Mohamed Fouda, Jason Bonacum, Timothy L. Kovachy, Selim M. Shahriar

Department of Physics and Astronomy: Faculty Publications

A point source interferometer (PSI) is a device where atoms are split and recombined by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that can automatically filter out the signal from accelerations. The phase shift arising from the rotations is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by increasing the momentum transfer, it should be possible to enhance the sensitivity of the PSI. Here, we investigate the degree of enhancement in …


Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt Jun 2021

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt

Department of Physics and Astronomy: Faculty Publications

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used …


Publications Of Paul D. Burrow, Paul Burrow Jun 2021

Publications Of Paul D. Burrow, Paul Burrow

Paul Burrow Publications

A chronological list of 111 publications (1967-2014), with links to public access copies of 50 or more in the UNL Digital Commons. Updated as of 6/18/2021.


Corrigendum: Surface Termination And Schottky-Barrier Formation Of In4Se3(001) [Semiconductor Science And Technology (2020) 35 (065009) Doi: 10.1088/1361-6641/Ab7e45], Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben Jun 2021

Corrigendum: Surface Termination And Schottky-Barrier Formation Of In4Se3(001) [Semiconductor Science And Technology (2020) 35 (065009) Doi: 10.1088/1361-6641/Ab7e45], Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben

Peter Dowben Publications

Through the description of various surface terminations, the chain direction of In4Se3 in this paper [1] is implied to be in the plane of its surface. Even though the common convention for photoemission spectroscopy is to place z-axis along the surface normal, the axis perpendicular to the growth direction for this indium selenide is the crystallographic a-axis (and not the c-axis) [2–4]. Therefore, in our work the surface of In4Se3 should have been labeled (100), and not (001), to prevent any confusion that may have resulted from a less than conventional index notation. Data availability statement The data that support …


Colossal Intrinsic Exchange Bias From Interfacial Reconstruction In Epitaxial Cofe2 O4/Al2 O3 Thin Films, Detian Yang, Yu Yun, Arjun Subedi, Nicholas E. Rogers, David M. Cornelison, Peter Dowben, Xiaoshan Xu Jun 2021

Colossal Intrinsic Exchange Bias From Interfacial Reconstruction In Epitaxial Cofe2 O4/Al2 O3 Thin Films, Detian Yang, Yu Yun, Arjun Subedi, Nicholas E. Rogers, David M. Cornelison, Peter Dowben, Xiaoshan Xu

Peter Dowben Publications

We have studied the epitaxial CoFe2O4 (111) films grown on Al2O3 (0001) substrates of different thickness at various temperature and discovered colossal intrinsic exchange bias up to 7 ± 2 kOe. X-ray and electron diffraction clearly indicate an interfacial layer about 2 nm of different crystal structure from the “bulk” part of the CoFe2O4 film. The thickness dependence of the exchange bias suggests a hidden antiferromagnetic composition in the interfacial layer that couples to the ferrimagnetic “bulk” part of the CoFe2O4 film as the origin of the exchange …


Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer May 2021

Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds and alloys based on them are of great recent interest because they exhibit a wide variety of spin structures, magnetic properties, and electron-transport phenomena. Their properties are tunable by alloying and we have investigated L21-ordered compound Ru2MnSn and its alloys by varying the atomic Mn:Sn composition. While antiferromagnetic ordering with a Néel temperature of 361 K was observed in Ru2MnSn, the Mn-poor Ru2Mn0.8Sn1.2 alloy exhibits properties of a diluted antiferromagnet in which there are localized regions of uncompensated Mn spins. Furthermore, a noncoplanar spin structure, evident from …


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner Mar 2021

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic beam …