Open Access. Powered by Scholars. Published by Universities.®

DePaul University

Articles 1 - 23 of 23

Full-Text Articles in Atmospheric Sciences

Monitoring Personal Exposure To Air Quality Gradients While Biking On An Elevated Urban Trail, Gavin D. Salas Jun 2023

Monitoring Personal Exposure To Air Quality Gradients While Biking On An Elevated Urban Trail, Gavin D. Salas

DePaul Discoveries

Air pollution is a major global health concern, specifically as it relates to the human exposome. The EPA criteria pollutants, including particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), and NOx can have severe impacts on respiratory and cardiovascular health, particularly in populations with chronic illnesses such as asthma, those facing economic hardships and individuals who frequently spend time outdoors, such as bicyclists and runners. To understand the impact of air pollution on human health, it is essential to assess personal exposure. This study aimed to investigate personal exposure to air pollution levels while biking along …


High Altitude Ballooning As A Platform For Measuring Ozone Uptake Over Agricultural Landscapes, Thomas Sykora, Mark Potosnak Aug 2021

High Altitude Ballooning As A Platform For Measuring Ozone Uptake Over Agricultural Landscapes, Thomas Sykora, Mark Potosnak

DePaul Discoveries

Measuring plant health is a key aspect in maximizing crop outputs. One often overlooked risk to crop fields is damage caused by stomatal ozone uptake; measuring this uptake is an important tool in understanding crop losses. Traditional methods for measuring plant ozone uptake are prohibitively expensive and rely on equipment that cannot easily be moved. Here, we propose high-altitude weather ballooning as a cost-effective alternative for measuring ozone uptake on a regional (~10 km) spatial scale. Ozonesounde data was obtained with weather balloons launched from the National Oceanic and Atmospheric Administration research station in Boulder, Colorado. This data was then …


Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour Oct 2017

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour

2017 Academic High Altitude Conference

The North Dakota Atmospheric Education Student Initiated Research (ND-AESIR) team launched a balloon during the total solar eclipse in Rexburg, Idaho. After the umbra’s passage, the balloon experienced unexpectedly high levels of atmospheric turbulence. Video footage taken from the payload displays the conditions, and analysis of flight path data models created from the iridium GPS confirm that unusually violent turbulence occurred. These forces caused the key rings holding the bottom of the parachute to the payload train to rip open; the balloon and parachute flew away and the payloads free fell to the surface from an altitude of 68,301 feet. …


Physoon - Radiation Detection In Various High Altitude Environments, Christopher Helmerich Oct 2017

Physoon - Radiation Detection In Various High Altitude Environments, Christopher Helmerich

2017 Academic High Altitude Conference

Physoon is a high altitude ballooning payload designed and built by members of the Space Hardware Club for the purpose of comparing cosmic and terrestrial radiation from a variety of environmental conditions, including clear days, night times, solar events (eclipses, solar flares, coronal mass ejections), and thunderstorms. Over three design iterations, Physoon has flown eleven times with various combinations of Geiger counters sensors: a low energy Alpha-Beta-Gamma detector, an unshielded high-energy Beta-Gamma detector, and a shielded high-energy Beta-Gamma detector. One of these iterations successfully recovered data from high altitude during totality of the Great American Solar Eclipse. Another iteration was …


Use And Implementation Of The Automatic Packet Reporting System (Aprs) On High Altitude Payloads., Sam Fink, Robert Moody, Carson Keeter, Cassandra Runyon, Cyndi Hall Oct 2017

Use And Implementation Of The Automatic Packet Reporting System (Aprs) On High Altitude Payloads., Sam Fink, Robert Moody, Carson Keeter, Cassandra Runyon, Cyndi Hall

2017 Academic High Altitude Conference

Once a weather balloon enters the uncontrollable realm of nature upon release it is subject to a high degree of freedom and flight path options. Passive tracking methods become essential to physically follow the trajectory, the balloon, and its payload. The Automatic Packet Reporting System (APRS) provides an ideal platform for tracking high-altitude and low earth orbit instrumentation because at zenith there is no radio horizon. Demonstrated aboard the International Space Station, this simple system provides the maximum tracking range at very low power and cost with very high accuracy, by utilizing existing federally funded infrastructure. An amateur radio license …


Eclipse Ballooning Stem Outreach For Elementary, Middle, And High School Education, Peter Henson, Fnu Anamika, Denise Buckner, Marissa Saad, Caitlin Nolby Oct 2017

Eclipse Ballooning Stem Outreach For Elementary, Middle, And High School Education, Peter Henson, Fnu Anamika, Denise Buckner, Marissa Saad, Caitlin Nolby

2017 Academic High Altitude Conference

To promote Science, Technology, Engineering and Mathematics (STEM) education through ballooning, the North Dakota Space Grant Consortium (NDSGC) organizes an annual Near-Space Balloon Competition (NSBC) for students in grades 6 - 12. Students across the state of North Dakota have the opportunity to launch experiments into a near- space environment. The students learn how to write proposals, design payloads, and analyze data. They learn through an active, inquiry-based style that will prepare them for real-world engineering and critical thinking jobs. In 2016, NSBC proposed Great American Eclipse as the theme for the competition, thus the students were focused on designing …


Impactful Practice: Lessons Learned Through Ballooning Outreach, Tracy Knowles, Leandro Braga, Alex Eberle, Tom Busby, John Paul Beard, Jessica Glasscock, Jacolby Gardner, Matt Smither Oct 2017

Impactful Practice: Lessons Learned Through Ballooning Outreach, Tracy Knowles, Leandro Braga, Alex Eberle, Tom Busby, John Paul Beard, Jessica Glasscock, Jacolby Gardner, Matt Smither

2017 Academic High Altitude Conference

The goal of Bluegrass Community and Technical College’s (BCTC) Eclipse Outreach Ambassador Project was to get students across the Bluegrass excited and educated about the 2017 total solar eclipse. Several years ago the BalloonSat Project was started to provide hands-on earth and atmospheric science experiences to BCTC students. In linking the two initiatives, we allowed BCTC BalloonSat team members to continue learning to design, build, test, fly and retrieve balloon-borne payloads while using a novel method by which to engage local elementary and middle school students in learning more about and anticipating the upcoming eclipse. Eclipse practice flights carried payloads …


Placing A High-Altitude Balloon In The Path Of Totality, Nicholas Jordan, Christopher Helmerich Oct 2017

Placing A High-Altitude Balloon In The Path Of Totality, Nicholas Jordan, Christopher Helmerich

2017 Academic High Altitude Conference

The UAH Space Hardware Club had conducted 70 flights prior to the Eclipse. In this time, we have gained valuable skills and experience which we have put into practice and passed on through the years. We put these skills into practice for the Eclipse. Our first challenge was finding where to launch. We started out by looking for suitable locations inside totality. We also examined a map of totality at 80,000 ft. We then ran predictions based on past weather during that time of year. By compiling multiple past predictions, we eliminated possible launch sites. We had multiple payloads, some …


The Mobile Monitoring Of Particulate Matter Through Wearable Sensors And Their Influence On Students' Environmental Attitudes, Joseph M. Abbate Jul 2017

The Mobile Monitoring Of Particulate Matter Through Wearable Sensors And Their Influence On Students' Environmental Attitudes, Joseph M. Abbate

DePaul Discoveries

While we have a comprehensive understanding of air pollutants, and their spatiotemporal characteristics across global, and even regional, scales, we are quite limited in our capacity to monitor neighborhood-scale emissions. The mobile monitoring of air pollution is a growing field, prospectively filling in these gaps while personalizing air quality-based tools and risk assessment. In the present study, we developed wearable sensors for particulate matter (PM); and through a citizen science approach, students of partnering Chicago schools monitored PM concentrations throughout their commutes over a five-day period. While their recorded findings would be used to explore the relationship between PM concentrations …


Exploring The Edge Of Space: Streamlining Physics And Earth Science Collaboration In A New Community College Course, David Kobilka, Yoshinao Hirai Ph.D. Aug 2016

Exploring The Edge Of Space: Streamlining Physics And Earth Science Collaboration In A New Community College Course, David Kobilka, Yoshinao Hirai Ph.D.

2017 Academic High Altitude Conference

We designed a new lab science course on stratospheric ballooning (SB), titled Exploring the Edge of Space. The course, which starts in the upcoming semester, brings together two groups of students simultaneously: Mainstream liberal arts students and students in the college’s Honors program. The Honors students meet an additional hour weekly, review scientific literature extensively, and complete a capstone project. The course design is a collaboration between the physics and earth science departments at Central Lakes College, and is drawn on the five-year experience of the authors doing SB flights, many in collaboration with the Bemidji State University SB program. …


Development Of A "Multi-Cut" Payload For Use In Stratospheric Ballooning Missions, James Flaten, Joey Habeck, Noah Biniek, Steven Smeaton, Austin Langford, Jordan Diers, Isaac Krieger Aug 2016

Development Of A "Multi-Cut" Payload For Use In Stratospheric Ballooning Missions, James Flaten, Joey Habeck, Noah Biniek, Steven Smeaton, Austin Langford, Jordan Diers, Isaac Krieger

2017 Academic High Altitude Conference

The ability to cut strings (AKA lines) during stratospheric ballooning missions has a wide variety of uses including, but not limited to, (a) flight termination (i.e. cutting payloads away from the main balloon), (b) cutting away excess lift balloon(s) to slow ascent rate (and possibly achieve float), (c) cutting away ballast weights to slow descent rate or increase ascent rate, (d) cutting away burst balloon(s) on descent to avoid parachute entanglement, and (e) cutting away payloads which are intended to return to the ground independently, for experimental purposes. We report on the development of a “multi-cut” payload box that uses …


Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo Jul 2016

Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo

DePaul Discoveries

An increase in the amount of factories and machines that emit greenhouse gases (GHGs) has caused the concentration of GHGs to rise steeply since the industrial era. These emissions create compounds that react with sunlight to form ozone, a GHG. Ozone not only traps heat in the atmosphere causing long-term global issues, but it also causes direct harm to both plants and animals. The damage that ozone causes to plants is due to plants taking the gas up through their stomata. Measuring ozone uptake has traditionally been a difficult and expensive process. This study proposes a novel approach towards measuring …


Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole Jul 2016

Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole

DePaul Discoveries

Isoprene, the most abundant hydrocarbon in the atmosphere, plays a significant role in atmospheric chemistry. Its reactions with NOx lead to the formation of ozone in the lower troposphere, which is harmful to plants and detrimental to human health. As air temperatures and CO2 concentrations increase with climate change, it is uncertain how isoprene emissions from plants will respond. We hypothesized that isoprene emissions will increase with the combination of increasing temperature and CO­2 concentrations. We predict that oaks grown at a higher temperature will exhibit an increase in isoprene emissions with combined short-term increases in temperature …


The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez Jul 2016

The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez

DePaul Discoveries

Isoprene is a biogenic volatile organic compound that is emitted by various plant species and plays an important role in the chemistry of the atmosphere. When it reacts with pollutants in the air, such as nitrogen oxides, the precursor to ozone (O3) is formed. In this experiment, we measured leaf emissions from 20 different oak species at the Morton Arboretum (Lisle, Illinois). The aim was to better understand differences in isoprene emissions across oak species. Since emissions have been found to protect leaves against brief periods of heat stress, we hypothesized that oaks native to areas with greater …


Low-Cost Hab Platform To Measure Particulate Matter In The Troposphere, Mark J. Potosnak, Bernhard Beck-Winchatz, Paul Ritter Jul 2016

Low-Cost Hab Platform To Measure Particulate Matter In The Troposphere, Mark J. Potosnak, Bernhard Beck-Winchatz, Paul Ritter

2017 Academic High Altitude Conference

High-altitude balloons (HABs) are an engaging platform for formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere. In this poster presentation we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT and 900 MHz spread spectrum) that do not require a …


Applying Newton’S Law Of Cooling When The Target Keeps Changing Temperature, Such As In Stratospheric Ballooning Missions, James Flaten, Kaye Smith, Erick Agrimson Jun 2016

Applying Newton’S Law Of Cooling When The Target Keeps Changing Temperature, Such As In Stratospheric Ballooning Missions, James Flaten, Kaye Smith, Erick Agrimson

2017 Academic High Altitude Conference

Newton’s Law of Cooling describes how a “small” system, such as a thermometer, comes to thermal equilibrium with a “large” system, such as its environment, as a function of time. It is typically applied when the environment is in thermal equilibrium and the conditions are such that the thermal decay time for the thermometer is a constant. Neither of these conditions are met when measuring environmental (i.e. atmospheric) temperature using a thermometer mounted in a payload lofted into the stratosphere under weather balloons. In this situation the thermometer is in motion so it encounters layer after layer of atmosphere which …


Getting Students Excited About Science With High Altitude Ballooning, Charles F. Niederriter, Steven H. Mellema Jun 2016

Getting Students Excited About Science With High Altitude Ballooning, Charles F. Niederriter, Steven H. Mellema

2017 Academic High Altitude Conference

Many of us dream of exploring space, but there are not many ways to do so. Although it is difficult to get into deep space, near space is within our grasp. High altitude balloons are released into the stratosphere, generally reaching between 60,000 to 120,000 feet before they burst and their payload is returned to earth by parachute. Modern balloon systems generally contain electronic equipment such as radio transmitters, cameras, and GPS receivers, as well as a variety of scientific instruments. Not only is high altitude ballooning a great way to introduce the electronics and programming skills needed to collect …


Development Of An Integrated Online Balloon Flight System, Ethan E. Harstad Jun 2015

Development Of An Integrated Online Balloon Flight System, Ethan E. Harstad

2017 Academic High Altitude Conference

Aerodyne Labs has been working with the Stratospheric Ballooning Association to develop an all inclusive high altitude ballooning software suite. This software suite is intended to allow every step of conducting a balloon flight to be conducted on a single website. Flight predictions can be performed many days in advance and used to automatically generate notices for both the FAA and public. Once the balloon has been launched, telemetry can be streamed to the website to allow real-time position and telemetry updates, including a dedicated view for FAA controllers. Data that is not streamed from the payload can be uploaded …


Integrating K12 Outreach With Undergraduate & Graduate Student Research Through Balloonsat: High Altitude Balloons, J Tillman Kennon, Bryant Fong Jun 2015

Integrating K12 Outreach With Undergraduate & Graduate Student Research Through Balloonsat: High Altitude Balloons, J Tillman Kennon, Bryant Fong

2017 Academic High Altitude Conference

The Arkansas BalloonSAT team has successfully launched and recovered 37 BalloonSAT’s dating back to the first flight on December 16, 2006. Numerous instruments measuring such things as atmospheric temperature, humidity, radiation, and light intensity have recorded data from different locations over the State of Arkansas. The initial focus of this project was outreach with the k-12 schools, and still involves outreach; however atmospheric research has become a significant component for this endeavor. This ongoing collaborative projection has involved a number of faculty and students from different academic backgrounds, including physics, chemistry, biology, and astronomy among different ASGC schools who have …


Techniques For Payload Stabilization For Improved Photography During Stratospheric Balloon Flights, James Flaten, Christopher Gosch, Joseph (Benjamin) Habeck Jun 2015

Techniques For Payload Stabilization For Improved Photography During Stratospheric Balloon Flights, James Flaten, Christopher Gosch, Joseph (Benjamin) Habeck

2017 Academic High Altitude Conference

Payload-box rotation and swing are perennial challenges to achieving high-quality photography (typically videography) during weather-balloon flights to “near-space” (AKA the stratosphere). Continuous camera motion can lead to blurred still photos, nearly-impossible-to-watch video footage, and precludes time-exposure photography required for most astronomical imaging even though altitudes are reached where the daytime sky appears black. Apparently-random payload rotation, persisting even at altitude, can often exceed servo rotation rates and frustrate attempts to do active camera pointing. Here we discuss mostly-passive payload stabilization strategies we, and our collaborators, have used to mitigate and dampen both swing and rotation of suspended payloads on high-altitude …


The “Stratospheric Cricket Keeper” – Developing A Simple“Life-Support” Payload For High-Altitude Balloon Missions, Lucas Kramer, Chad Serba, James Flaten Jun 2015

The “Stratospheric Cricket Keeper” – Developing A Simple“Life-Support” Payload For High-Altitude Balloon Missions, Lucas Kramer, Chad Serba, James Flaten

2017 Academic High Altitude Conference

Exposure to the environmental conditions of “near-space” (AKA the stratosphere) is quickly fatal to nearly all forms of animal life. It is even challenging to build a sealable enclosure that can keep insects (crickets) alive through the dramatic and simultaneous pressure and temperature drops experienced during a high-altitude balloon mission. This poster describes the development of a rugged “cricket keeper” in which we were able to fly crickets to the stratosphere and, quoting the words of JFK, “return (them) safely to the earth!” This “life-support” payload had large windows (for the view!) and included Arduino-logged temperature and pressure sensors, an …


Learning To Fly: Initial Experiments In High Altitude Ballooning, Tracy L. Knowles, Dalton Warren, Sara Stewart, Angel Smith, Joe Maciag Jun 2015

Learning To Fly: Initial Experiments In High Altitude Ballooning, Tracy L. Knowles, Dalton Warren, Sara Stewart, Angel Smith, Joe Maciag

2017 Academic High Altitude Conference

The Bluegrass Community and Technical College’s (BCTC) Balloon Sat Project trained students and faculty to design, build, and fly balloon-borne atmospheric data collection payloads. Students and faculty attended NASA’s Balloon Sat four day workshop/Flight at Marshall Space Flight Center in Huntsville, AL. During the Spring 2015 semester, the student team launched two balloons with sensors on board that measured atmospheric temperature, pressure, altitude, humidity, and carbon dioxide concentrations.


Using A High Altitude Balloon Platform To Observe And Measure Seasonal Ozone Flux Over Agricultural Landscapes, Cody Sabo Jun 2015

Using A High Altitude Balloon Platform To Observe And Measure Seasonal Ozone Flux Over Agricultural Landscapes, Cody Sabo

2017 Academic High Altitude Conference

The concentration of greenhouse gasses (GHGs) in the atmosphere has continued to rise since the industrial era. This issue has had a multitude of negative impacts on all living things. Among the major GHGs are carbon dioxide, methane, nitrous oxide, and ozone. Ozone is of particular importance because it not only has the ability to trap heat in the atmosphere, but it also directly impacts organisms by causing harm to both plants and humans. The damage that ozone causes to plants is most closely linked to ozone uptake rather than ozone concentration. So, measuring ozone uptake is becoming critical for …