Open Access. Powered by Scholars. Published by Universities.®

PDF

Michigan Technological University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 44

Full-Text Articles in Atmospheric Sciences

Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai Jan 2023

Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai

Dissertations, Master's Theses and Master's Reports

Aerosols are particles suspended in the atmosphere; they are emitted during natural phenomena such as dust storms, wildfires, and volcanic eruptions, and during anthropogenic activities like household wood burning, vehicles operations, and industrial productions, or they can form in the atmosphere from gas to particle partition. Aerosols impact earth’s weather and climate by absorbing and scattering the incoming solar and the outgoing earth thermal radiation and interacting with clouds. The optical properties of aerosols evolve as the chemical and physical properties vary during their residence in the atmosphere. In addition, the aerosols’ properties strongly depend on the vertical distribution in …


Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky Jan 2021

Investigating Ice Nucleation At Negative Pressures Using Molecular Dynamics: A First Order Approximation Of The Dependence Of Ice Nucleation Rate On Pressure, Elise Rosky

Dissertations, Master's Theses and Master's Reports

Atmospheric scientists and climate modelers are faced with uncertainty around the process of ice production in clouds. While significant progress has been made in predicting homogeneous and heterogeneous ice nucleation rates as a function of temperature, recent experiments have shown that ice nucleation rates can be enhanced without decreasing temperature, through various mechanical agitations. One hypothesis for these findings is that mechanisms of stretching water and thereby inducing negative pressure in the liquid could lead to an increase in freezing rate. To better understand the viability of this concept, the effect of negative pressure on ice nucleation rates needs to …


Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas Jan 2021

Modeling And Numerical Simulations Of The Michigan Tech Convection Cloud Chamber, Subin Thomas

Dissertations, Master's Theses and Master's Reports

Understanding atmospheric clouds is essential for human progress, ranging from short-term effects such as when and how much it rains to long-term effects such as how much temperatures would rise due to global climate change. Clouds vary globally and seasonally; also they have length scales ranging from a few nanometers to a few kilometers and timescales from a few nanoseconds to a few weeks. Knowledge gaps in aerosol-cloud-turbulence interactions and a lack of sufficient resolution in observations pose a challenge in understanding cloud systems.

Experimental facilities like the Michigan Tech Cloud Chamber can provide a suitable platform for studying aerosol-cloud …


Activation Scavenging Of Aerosol : Effect Of Turbulence And Aerosol-Composition, Abu Sayeed Md Shawon Jan 2021

Activation Scavenging Of Aerosol : Effect Of Turbulence And Aerosol-Composition, Abu Sayeed Md Shawon

Dissertations, Master's Theses and Master's Reports

The interaction of aerosol particles with solar radiation significantly contributes to the global radiation balance. The magnitude of this aerosol-radiation interaction, among other parameters, depends on different aerosol properties, including how readily these particles would act as cloud condensation nuclei (CCN). These properties are governed by the formation and scavenging processes of aerosol. This dissertation explores some of these scavenging processes.

Favorable humidity and preexisting aerosol particles acting as CCN are the sine qua non conditions to form cloud droplets in Earth’s atmosphere. Forming cloud droplets (known as activation), meanwhile, acts as a wet scavenging mechanism for those CCN. Given …


Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek Jan 2021

Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek

Dissertations, Master's Theses and Master's Reports

Aerosol and water are inexorably linked, and both are ubiquitous within our atmosphere and required components for cloud formation. Relative humidity (RH), a temperature dependent quantity, can have a significant influence on the size, shape, and ultimately, the optical properties of the aerosol. RH can vary substantially on small spatial and short temporal scales in turbulent conditions due to rapid fluctuations in temperature and water vapor mixing ratio. Accurate assessment of optical enhancements due to an increase in RH is key for determining the particles’ impact on the climate and visibility.

A humidity-controlled cavity attenuated phase-shift albedometer (H-CAPS-PMSSA) …


Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni Aug 2019

Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni

Michigan Tech Publications

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after …


Molecular Characterization Of Free Tropospheric Organic Aerosol And The Development Of Computational Tools For Molecular Formula Assignment, Simeon Schum Jan 2019

Molecular Characterization Of Free Tropospheric Organic Aerosol And The Development Of Computational Tools For Molecular Formula Assignment, Simeon Schum

Dissertations, Master's Theses and Master's Reports

Organic aerosol affects human health and climate. These effects are largely determined by the composition of the organic aerosol, which is a complex mixture of species. Understanding the complexity of organic aerosol is critical to determining its effect on human health and climate. In this study, long range transported organic aerosol collected at the Pico Mountain Observatory was analyzed using ultrahigh resolution mass spectrometry. Organic aerosol transported in the free troposphere had an overall lower extent of oxidation than aerosol transported in the boundary layer. It was hypothesized that the lower oxidation was related to a more viscous phase state …


Investigation Of Light Transport And Scattering In Turbulent Clouds: Simulations And Laboratory Measurements, Corey D. Packard Jan 2019

Investigation Of Light Transport And Scattering In Turbulent Clouds: Simulations And Laboratory Measurements, Corey D. Packard

Dissertations, Master's Theses and Master's Reports

A better understanding of light transport and scattering in turbulent clouds is needed for more accurate remote sensing, improved imaging and signal transmission through atmospheric aerosol and fog, and deeper understanding of cloud optical properties relevant to weather and climate. In this study, we investigate the impact of light scattering in clouds on two problems of atmospheric relevance.

In the first part, we examine deleterious effects of the atmosphere on remotely acquired images including signal attenuation and potential blurring due to forward-scattered light accepted by the imaging system. A prior proposed aerosol scattering model provides a method for calculating the …


Aerosol-Cloud Interactions In Turbulent Clouds: A Combined Cloud Chamber And Theoretical Study, Kamal Kant Chandrakar Jan 2019

Aerosol-Cloud Interactions In Turbulent Clouds: A Combined Cloud Chamber And Theoretical Study, Kamal Kant Chandrakar

Dissertations, Master's Theses and Master's Reports

The influence of aerosol concentration on the cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. In chapter 2, moist Rayleigh-Bénard convection with water saturated boundaries is explored using a one-dimensional-turbulence model. This study provides some background about supersaturation statistics in moist convection. Chapters 3 - 7 discuss the experimental and theoretical investigation of aerosol-cloud interactions and cloud droplet size-distributions in turbulent conditions. The experiments are performed in a way so that steady-state microphysics are achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased …


Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez Jan 2019

Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez

Dissertations, Master's Theses and Master's Reports

Remote sensing techniques used for measurement of atmospheric cloud properties operate under the notion that light extinction caused by scattering and absorption is exponential due to Beer-Lambert law. This is expected to be valid for a uni-form medium with no spatial correlations between particle position. The aim of this research was to show that under turbulent conditions, cloud droplets cannot be interpreted as non-correlated, and in turn will exhibit a lower than exponential light decay from scattering. The research took place at the MTU π-Chamber laboratory. A temperature difference between the floor and ceiling of the chamber was applied to …


Extreme Molecular Diversity In Biomass Burning Atmospheric Organic Aerosol Observed Through Ultrahigh Resolution Mass Spectrometry, Matthew Brege Jan 2019

Extreme Molecular Diversity In Biomass Burning Atmospheric Organic Aerosol Observed Through Ultrahigh Resolution Mass Spectrometry, Matthew Brege

Dissertations, Master's Theses and Master's Reports

Ambient atmospheric aerosol is ubiquitous in the atmosphere, originating from a variety of natural and man-made sources. These microscopic particles have profound impacts on the global climate system as well as human health. The organic fraction of atmospheric aerosol is an extremely complex mixture which is not yet fully characterized. These unknown organic aerosol species contribute to the uncertainty in the effect of aerosol on climate and uncertainty in overall ambient aerosol toxicity. Light absorbing organic aerosol can interact with incoming solar radiation and contribute to atmospheric heating; however, the source apportionment and overall fate of these absorbing organic aerosol …


Fine-Scale Droplet Clustering In Atmospheric Clouds: 3d Radial Distribution Function From Airborne Digital Holography, Michael L. Larsen, Raymond Shaw, Alexander Kostinski, Susanne Glienke Nov 2018

Fine-Scale Droplet Clustering In Atmospheric Clouds: 3d Radial Distribution Function From Airborne Digital Holography, Michael L. Larsen, Raymond Shaw, Alexander Kostinski, Susanne Glienke

Department of Physics Publications

The extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is of possible relevance to precipitation formation and radiative transfer. To that end, data gathered by an airborne holographic instrument are used to explore the three-dimensional spatial statistics of cloud droplet positions in homogeneous stratiform boundary-layer clouds. The three-dimensional radial distribution functions g(r) reveal unambiguous evidence of droplet clustering. Three key theoretical predictions are observed: the existence of positive correlations, onset of correlation in the turbulence dissipation range, and monotonic increase of g(r) with decreasing r. This implies that current theory captures the essential processes contributing …


Turbulence Induced Cloud Voids: Observation And Interpretation, Katarzyna Karpinska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, Eberhard Bodenschatz Oct 2018

Turbulence Induced Cloud Voids: Observation And Interpretation, Katarzyna Karpinska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, Eberhard Bodenschatz

Department of Physics Publications

The phenomenon of cloud voids, i.e., elongated volumes inside a cloud that are devoid of droplets, was observed with laser sheet photography in clouds at a mountain-top station. Two experimental cases, similar in turbulence conditions yet with diverse droplet size distributions and cloud void prevalence, are reported. A theoretical explanation is proposed based on the study of heavy inertial sedimenting particles inside a Burgers vortex. A general conclusion regarding void appearance is drawn from theoretical analysis. Numerical simulations of polydisperse droplet motion with realistic vortex parameters and Mie scattering visual effects accounted for can explain the presence of voids with …


Molecular And Physical Characteristics Of Aerosol At A Remote Free Troposphere Site: Implications For Atmospheric Aging, Simeon Schum, Bo Zhang, Katja Džepina, Paolo Fialho, Claudio Mazzoleni, Lynn Mazzoleni Oct 2018

Molecular And Physical Characteristics Of Aerosol At A Remote Free Troposphere Site: Implications For Atmospheric Aging, Simeon Schum, Bo Zhang, Katja Džepina, Paolo Fialho, Claudio Mazzoleni, Lynn Mazzoleni

Department of Chemistry Publications

Aerosol properties are transformed by atmospheric processes during long-range transport and play a key role in the Earth's radiative balance. To understand the molecular and physical characteristics of free tropospheric aerosol, we studied samples collected at the Pico Mountain Observatory in the North Atlantic. The observatory is located in the marine free troposphere at 2225m above sea level, on Pico Island in the Azores archipelago. The site is ideal for the study of long-range-transported free tropospheric aerosol with minimal local influence. Three aerosol samples with elevated organic carbon concentrations were selected for detailed analysis. FLEXPART retroplumes indicated that two of …


Dispersion Aerosol Indirect Effect In Turbulent Clouds: Laboratory Measurements Of Effective Radius, K. K. Chandrakar, Will Cantrell, A. Kostinski, Raymond Shaw Sep 2018

Dispersion Aerosol Indirect Effect In Turbulent Clouds: Laboratory Measurements Of Effective Radius, K. K. Chandrakar, Will Cantrell, A. Kostinski, Raymond Shaw

Department of Physics Publications

Cloud optical properties are determined not only by the number density nd and mean radiusof cloud droplets but also by the shape of the droplet size distribution. The change in cloud optical depth with changing nd, due to the change in distribution shape, is known as the dispersion effect. Droplet relative dispersion is defined as d=σr / ṝ . For the first time, a commonly used effective radius parameterization is tested in a controlled laboratory environment by creating a turbulent cloud. Stochastic condensation growth suggests d independent of nd for a nonprecipitating cloud, …


Measurement And Modeling Of The Multiwavelength Optical Properties Of Uncoated Flame-Generated Soot, Sara D. Forestieri, Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Paulo Massoli, Eben S. Cross, Claudio Mazzoleni, Et. Al. Aug 2018

Measurement And Modeling Of The Multiwavelength Optical Properties Of Uncoated Flame-Generated Soot, Sara D. Forestieri, Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Paulo Massoli, Eben S. Cross, Claudio Mazzoleni, Et. Al.

Michigan Tech Publications

Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters >∼160 nm, the MAC and absorption …


Observation Of A Link Between Energy Dissipation Rate And Oscillation Frequency Of The Large-Scale Circulation In Dry And Moist Rayleigh-Bénard Turbulence, Dennis Niedermeier, Kelken Chang, Will Cantrell, Kamal Kant Chandrakar, David Ciochetto, Raymond Shaw Aug 2018

Observation Of A Link Between Energy Dissipation Rate And Oscillation Frequency Of The Large-Scale Circulation In Dry And Moist Rayleigh-Bénard Turbulence, Dennis Niedermeier, Kelken Chang, Will Cantrell, Kamal Kant Chandrakar, David Ciochetto, Raymond Shaw

Department of Physics Publications

In this study both the small- and large-scale flow properties of turbulent Rayleigh-Bénard convection are investigated. Experiments are carried out using the Π chamber (aspect ratio Γ=2) for Rayleigh number range Ra∼108–109 and Prandtl number Pr≈0.7. Furthermore, experiments are run for dry and wet conditions, i.e., top and bottom surfaces of the chamber are dry and wet, respectively. For wet conditions we further distinguish between conditions with and without the presence of sodium chloride aerosol particles which, if supersaturated conditions are achieved, lead to cloud droplet formation. We therefore refer to these conditions as moist and cloudy, …


Identification And Characterization Of An Anomaly In Two-Dimensional Video Disdrometer Data, Michael L. Larsen, Michael Schönhuber Aug 2018

Identification And Characterization Of An Anomaly In Two-Dimensional Video Disdrometer Data, Michael L. Larsen, Michael Schönhuber

Michigan Tech Publications

The two-dimensional video distrometer (2DVD) is a well known ground based point-monitoring precipitation gauge, often used as a ground truth instrument to validate radar or satellite rainfall retrieval algorithms. This instrument records a number of variables for each detected hydrometeor, including the detected position within the sample area of the instrument. Careful analyses of real 2DVD data reveal an artifact—there are time periods where hydrometeor detections within parts of the sample area are artificially enhanced or diminished. Here, we (i) illustrate this anomaly with an exemplary 2DVD data set, (ii) describe the origin of this anomaly, (iii) develop and present …


The Interactive Stratospheric Aerosol Model Intercomparison Project (Isa-Mip): Motivation And Experimental Design, Claudio Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Simon Carn, Et. Al. Jul 2018

The Interactive Stratospheric Aerosol Model Intercomparison Project (Isa-Mip): Motivation And Experimental Design, Claudio Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Simon Carn, Et. Al.

Michigan Tech Publications

The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric …


Development Of The Wrf-Co2 4d-Var Assimilation System V1.0, Tao Zheng, Nancy H. F. French, Martin Baxter May 2018

Development Of The Wrf-Co2 4d-Var Assimilation System V1.0, Tao Zheng, Nancy H. F. French, Martin Baxter

Michigan Tech Publications

Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This …


The Fire And Smoke Model Evaluation Experiment - A Plan For Integrated, Large Fire-Atmosphere Field Campaigns, Susan Prichard, Roger Ottmar, Nancy H. F. French, Kirk Baker, Tim Brown, Craig Clements, Danielle Tanzer, Et. Al. Feb 2018

The Fire And Smoke Model Evaluation Experiment - A Plan For Integrated, Large Fire-Atmosphere Field Campaigns, Susan Prichard, Roger Ottmar, Nancy H. F. French, Kirk Baker, Tim Brown, Craig Clements, Danielle Tanzer, Et. Al.

Michigan Tech Research Institute Publications

The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study …


Expanding Spheres: Atoms To Earth, Local To Global, Science To Society, Sarah Green Feb 2018

Expanding Spheres: Atoms To Earth, Local To Global, Science To Society, Sarah Green

Distinguished Lecture Series

Best case scenario. Worst case scenario. Sarah Green talks about the human impacts of climate change and responding to those changes on local and global scales. Green, a professor in both the Department of Chemistry and the Great Lakes Research Center at Michigan Technological University, presented the Spring 2018 Distinguished Lecture at the Michigan Tech Research Forum. Her lecture, Expanding Spheres: Atoms to Earth, Local to Global, Science to Society, was Thursday, February 15, 2018.


Evaluating The Effectiveness Of Current Atmospheric Refraction Models In Predicting Sunrise And Sunset Times, Teresa Wilson Jan 2018

Evaluating The Effectiveness Of Current Atmospheric Refraction Models In Predicting Sunrise And Sunset Times, Teresa Wilson

Dissertations, Master's Theses and Master's Reports

The standard value for atmospheric refraction on the horizon of 34', used in all publicly available sunrise and sunset calculators, is found to be inadequate. The assumptions behind atmospheric models that predict this value fail to account for real meteorological conditions. The result is an uncertainty of one to five minutes in sunrise and sunset predictions at mid-latitudes (0° - 55° N/S). A sunrise/set calculator that interchanges the refraction component by varying the refraction model was developed. Two atmospheric refraction models of increasing complexity were tested along with the standard value. The predictions were compared with data sets of observed …


Long-Term Changes In Extreme Air Pollution Meteorology And Implications For Air Quality, Pei Hou Jan 2018

Long-Term Changes In Extreme Air Pollution Meteorology And Implications For Air Quality, Pei Hou

Dissertations, Master's Theses and Master's Reports

Extreme air pollution meteorology, such as heat waves, temperature inversions, and atmospheric stagnation episodes, can significantly affect air quality. In this study, we analyze their long-term trends and the potential impacts on air quality. The significant increasing trends for the occurrences of extreme meteorological events in 1951-2010 are identified with the reanalysis data, especially over the continental regions. A statistical analysis combining air quality data and meteorological data indicates strong sensitivities of air quality, including both average air pollutant concentrations and high pollution episodes, to extreme meteorological events. Results also show significant seasonal and spatial variations in the sensitivity of …


Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar Jan 2018

Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar

Dissertations, Master's Theses and Master's Reports

Wildfires are episodic disturbances that exert a significant influence on the Earth system. They emit substantial amounts of atmospheric pollutants, which can impact atmospheric chemistry/composition and the Earth’s climate at the global and regional scales. This work presents a collection of studies aimed at better estimating wildfire emissions of atmospheric pollutants, quantifying their impacts on remote ecosystems and determining the implications of 2000s-2050s global environmental change (land use/land cover, climate) for wildfire emissions following the Intergovernmental Panel on Climate Change (IPCC) A1B socioeconomic scenario.

A global fire emissions model is developed to compile global wildfire emission inventories for major atmospheric …


Morphology And Mixing State Of Soot And Tar Balls: Implications For Optical Properties And Climate, Janarjan Bhandari Jan 2018

Morphology And Mixing State Of Soot And Tar Balls: Implications For Optical Properties And Climate, Janarjan Bhandari

Dissertations, Master's Theses and Master's Reports

Soot particles form during incomplete combustion of carbonaceous materials. These particles strongly absorb light and directly affect Earth’s climate by warming our atmosphere. When freshly emitted, soot particles have a fractal-like morphology consisting of aggregates of carbon spherules. During atmospheric processing, soot aggregates interact with other materials present in our atmosphere (i.e., other aerosol or condensable vapors) and these interactions can result in the formation of coated, mixed or compacted soot particles with different morphologies. Any process that alters the morphology (shape, size and internal structure) and mixing state of soot also affects its optical properties, which in turn affect …


Investigation Of Microphysical Properties Of Laboratory And Atmospheric Clouds Using Digital In-Line Holography, Neel Desai Jan 2018

Investigation Of Microphysical Properties Of Laboratory And Atmospheric Clouds Using Digital In-Line Holography, Neel Desai

Dissertations, Master's Theses and Master's Reports

In this study, we attempt to perform in-cloud measurements, both in the laboratory using the Michigan Tech $\Pi$-chamber and in the atmosphere via the CSET field campaign. Atmospheric turbulence is believed to play a critical role in the growth, development and dissipation of clouds and it is important to study its effect in order to better understand and predict cloud properties such as albedo and lifetime. We use digital in-line holography to measure the effect of turbulence on cloud microphysical properties such as variations in droplet number concentration and droplet or ice particle size. In the first half, we study …


Evolution Of Multispectral Aerosol Absorption Properties In A Biogenically-Influenced Urban Environment During The Cares Campaign, Madhu Gyawali, W. Patrick Arnott, Rahul A. Zaveri, Chen Song, Bradley Flowers, Manvendra K. Dubey, Swarup China, Claudio Mazzoleni, Kyle Gorkowski, Et Al. Nov 2017

Evolution Of Multispectral Aerosol Absorption Properties In A Biogenically-Influenced Urban Environment During The Cares Campaign, Madhu Gyawali, W. Patrick Arnott, Rahul A. Zaveri, Chen Song, Bradley Flowers, Manvendra K. Dubey, Swarup China, Claudio Mazzoleni, Kyle Gorkowski, Et Al.

Michigan Tech Publications

We present the evolution of multispectral optical properties through urban aerosols that have aged and interacted with biogenic emissions, resulting in stronger short wavelength absorption and the formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made in June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon (BC) and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths ranging …


Laboratory, Computational And Theoretical Investigations Of Ice Nucleation And Its Implications For Mixed Phase Clouds, Fan Yang Jan 2017

Laboratory, Computational And Theoretical Investigations Of Ice Nucleation And Its Implications For Mixed Phase Clouds, Fan Yang

Dissertations, Master's Theses and Master's Reports

Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds.

In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases …


A Laboratory Facility To Study Gas-Aerosol-Cloud Interactions In A Turbulent Environment: The Π Chamber, K. Chang, J. Bench, M. Brege, Will Cantrell, K. Chandrakar, David Ciochetto, Claudio Mazzoleni, Lynn Mazzoleni, Dennis Niedermeier, R. A. Shaw Dec 2016

A Laboratory Facility To Study Gas-Aerosol-Cloud Interactions In A Turbulent Environment: The Π Chamber, K. Chang, J. Bench, M. Brege, Will Cantrell, K. Chandrakar, David Ciochetto, Claudio Mazzoleni, Lynn Mazzoleni, Dennis Niedermeier, R. A. Shaw

Department of Physics Publications

A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the atmosphere is of prime importance for an accurate understanding of Earth’s weather and climate. One aspect that remains especially vexing is that clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor supersaturation, fluctuate in space and time. With these problems in mind, a multiphase, turbulent reaction chamber—called the Π chamber because of the internal volume of 3.14 m3 with the cylindrical insert installed—has been developed. It is capable of pressures ranging from 1,000 to –60 hPa and can sustain …