Open Access. Powered by Scholars. Published by Universities.®

Number Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Number theory

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 65

Full-Text Articles in Number Theory

Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore Mar 2024

Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore

University Honors Theses

This thesis presents a surprising result that the difference in a certain sums of constant rotations by the golden mean approaches exactly 1/5. Specifically, we focus on the Birkhoff sums of these rotations, with the number of terms equal to squared Fibonacci numbers. The proof relies on the properties of continued fraction approximants, Vajda's identity and the explicit formula for the Fibonacci numbers.


Pairs Of Quadratic Forms Over P-Adic Fields, John Hall Jan 2024

Pairs Of Quadratic Forms Over P-Adic Fields, John Hall

Theses and Dissertations--Mathematics

Given two quadratic forms $Q_1, Q_2$ over a $p$-adic field $K$ in $n$ variables, we consider the pencil $\mathcal{P}_K(Q_1, Q_2)$, which contains all nontrivial $K$-linear combinations of $Q_1$ and $Q_2$. We define $D$ to be the maximal dimension of a subspace in $K^n$ on which $Q_1$ and $Q_2$ both vanish. We define $H$ to be the maximal number of hyperbolic planes that a form in $\mathcal{P}_K(Q_1, Q_2)$ splits off over $K$. We will determine which values for $(D, H)$ are possible for a nonsingular pair of quadratic forms over a $p$-adic field $K$.


Further Generalizations Of Happy Numbers, E. Simonton Williams Oct 2023

Further Generalizations Of Happy Numbers, E. Simonton Williams

Rose-Hulman Undergraduate Mathematics Journal

A positive integer n is defined to be happy if iteration of the function taking the sum of the squares of the digits of n eventually reaches 1. In this paper we generalize the concept of happy numbers in several ways. First we confirm known results of Grundman and Teeple and establish further results extending the known structure of happy numbers to higher powers. Then we construct a similar function expanding the definition of happy numbers to negative integers. Working with this function, we prove a range of results paralleling those already proven for traditional and generalized happy numbers. Finally, …


Approaches To The Erdős–Straus Conjecture, Ivan V. Morozov Aug 2023

Approaches To The Erdős–Straus Conjecture, Ivan V. Morozov

Publications and Research

The Erdős–Straus conjecture, initially proposed in 1948 by Paul Erdős and Ernst G. Straus, asks whether the equation 4/n = 1/x + 1/y + 1/z is solvable for all n ∈ N and some x, y, z ∈ N. This problem touches on properties of Egyptian fractions, which had been used in ancient Egyptian mathematics. There exist many partial solutions, mainly in the form of arithmetic progressions and therefore residue classes. In this work we explore partial solutions and aim to expand them.


Some Thoughts On The 3 × 3 Magic Square Of Squares Problem, Desmond Weisenberg Jun 2023

Some Thoughts On The 3 × 3 Magic Square Of Squares Problem, Desmond Weisenberg

Rose-Hulman Undergraduate Mathematics Journal

A magic square is a square grid of numbers where each row, column, and long diagonal has the same sum (called the magic sum). An open problem popularized by Martin Gardner asks whether there exists a 3×3 magic square of distinct positive square numbers. In this paper, we expand on existing results about the prime factors of elements of such a square, and then provide a full list of the ways a prime factor could appear in one. We also suggest a separate possible computational approach based on the prime signature of the center entry of the square.


Coefficients Of Modular Forms And Applications To Partition Theory, Michael Anthony Hanson May 2023

Coefficients Of Modular Forms And Applications To Partition Theory, Michael Anthony Hanson

Doctoral Dissertations

We begin with an overview of the theory of modular forms as well as some relevant sub-topics in order to discuss three results: the first result concerns positivity of self-conjugate t-core partitions under the assumption of the Generalized Riemann Hypothesis; the second result bounds certain types of congruences called "Ramanujan congruences" for an infinite class of eta-quotients - this has an immediate application to a certain restricted partition function whose congruences have been studied in the past; the third result strengthens a previous result that relates weakly holomorphic modular forms to newforms via p-adic limits.


Number Theoretic Arithmetic Functions And Dirichlet Series, Ivan V. Morozov Apr 2023

Number Theoretic Arithmetic Functions And Dirichlet Series, Ivan V. Morozov

Publications and Research

In this study, we will study number theoretic functions and their associated Dirichlet series. This study lay the foundation for deep research that has applications in cryptography and theoretical studies. Our work will expand known results and venture into the complex plane.


Euler Archive Spotlight, Erik R. Tou Mar 2023

Euler Archive Spotlight, Erik R. Tou

Euleriana

A survey of two translations posted to the Euler Archive in 2022.


Mathematical Structure Of Musical Tuning Systems, Shay Joel Francis Spitzer Jan 2023

Mathematical Structure Of Musical Tuning Systems, Shay Joel Francis Spitzer

Senior Projects Spring 2023

Over the course of history, western music has created a unique mathematical problem for itself. From acoustics, we know that two notes sound good together when they are related by simple ratios consisting of low primes. The problem arises when we try to build a finite set of pitches, like the 12 notes on a piano, that are all related by such ratios. We approach the problem by laying out definitions and axioms that seek to identify and generalize desirable properties. We can then apply these ideas to a broadened algebraic framework. Rings in which low prime integers can be …


Elliptic Functions And Iterative Algorithms For Π, Eduardo Jose Evans Jan 2023

Elliptic Functions And Iterative Algorithms For Π, Eduardo Jose Evans

UNF Graduate Theses and Dissertations

Preliminary identities in the theory of basic hypergeometric series, or `q-series', are proven. These include q-analogues of the exponential function, which lead to a fairly simple proof of Jacobi's celebrated triple product identity due to Andrews. The Dedekind eta function is introduced and a few identities of it derived. Euler's pentagonal number theorem is shown as a special case of Ramanujan's theta function and Watson's quintuple product identity is proved in a manner given by Carlitz and Subbarao. The Jacobian theta functions are introduced as special kinds of basic hypergeometric series and various relations between them derived using the triple …


Meertens Number And Its Variations, Chai Wah Wu Dec 2022

Meertens Number And Its Variations, Chai Wah Wu

Communications on Number Theory and Combinatorial Theory

In 1998, Bird introduced Meertens numbers as numbers that are invariant under a map similar to the Gödel encoding. In base 10, the only known Meertens number is 81312000. We look at some properties of Meertens numbers and consider variations of this concept. In particular, we consider variations of Meertens numbers where there is a finite time algorithm to decide whether such numbers exist, exhibit infinite families of these variations and provide bounds on parameters needed for their existence.


Proving Dirichlet's Theorem On Arithmetic Progressions, Owen T. Abma Aug 2022

Proving Dirichlet's Theorem On Arithmetic Progressions, Owen T. Abma

Undergraduate Student Research Internships Conference

First proved by German mathematician Dirichlet in 1837, this important theorem states that for coprime integers a, m, there are an infinite number of primes p such that p = a (mod m). This is one of many extensions of Euclid’s theorem that there are infinitely many prime numbers. In this paper, we will formulate a rather elegant proof of Dirichlet’s theorem using ideas from complex analysis and group theory.


On The Iwasawa Invariants Of Nonordinary Modular Forms, Rylan J. Gajek-Leonard Jun 2022

On The Iwasawa Invariants Of Nonordinary Modular Forms, Rylan J. Gajek-Leonard

Doctoral Dissertations

We extend known results on the behavior of Iwasawa invariants attached to Mazur-Tate elements for p-nonordinary modular forms of weight k=2 to higher weight modular forms with a_p=0. This is done by using a decomposition of the p-adic L-function due to R. Pollack in order to construct explicit lifts of Mazur-Tate elements to the full Iwasawa algebra. We then study the behavior of Iwasawa invariants upon projection to finite layers, allowing us to express the invariants of Mazur-Tate elements in terms of those coming from plus/minus p-adic L-functions. Our results combine with work of Pollack and Weston to relate the …


Structure Of Number Theoretic Graphs, Lee Trent May 2022

Structure Of Number Theoretic Graphs, Lee Trent

Mathematical Sciences Technical Reports (MSTR)

The tools of graph theory can be used to investigate the structure
imposed on the integers by various relations. Here we investigate two
kinds of graphs. The first, a square product graph, takes for its vertices
the integers 1 through n, and draws edges between numbers whose product
is a square. The second, a square product graph, has the same vertex set,
and draws edges between numbers whose sum is a square.
We investigate the structure of these graphs. For square product
graphs, we provide a rather complete characterization of their structure as
a union of disjoint complete graphs. For …


Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis May 2022

Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis

Student Research

While doing research looking for ways to categorize causal networks generated by Sequential Substitution Systems, I created a new notation to compactly summarize concatenations of integers or strings of integers, including infinite sequences of these, in the same way that sums, products, and unions of sets can be summarized. Using my method, any sequence of integers or strings of integers with a closed-form iterative pattern can be compactly summarized in just one line of mathematical notation, including graphs generated by Sequential Substitution Systems, many Primitive Pythagorean Triplets, and various Lucas sequences including the Fibonacci sequence and the sequence of square …


The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles May 2022

The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles

Electronic Theses, Projects, and Dissertations

This thesis is centered around the construction and analysis of the principal arithmetic surface (3, 5) over Q. By adjoining the two symbols i,j, where i2 = 3, j2 = 5, such that ij = -ji, I can produce a quaternion algebra over Q. I use this quaternion algebra to find a discrete subgroup of SL2(R), which I identify with isometries of the hyperbolic plane. From this quaternion algebra, I produce a large list of matrices and apply them via Mobius transformations to the point (0, 2), which is the center of my Dirichlet domain. This …


Streaming Down The Stern-Brocot Tree: Finding And Expressing Solutions To Pell's Equation In Sl(2,Z), Marcus L. Shell May 2021

Streaming Down The Stern-Brocot Tree: Finding And Expressing Solutions To Pell's Equation In Sl(2,Z), Marcus L. Shell

Theses

This paper explores and elaborates on a method of solving Pell’s equation as introduced by Norman Wildberger. In the first chapters of the paper, foundational topics are introduced in expository style including an explanation of Pell’s equation. An explanation of continued fractions and their ability to express quadratic irrationals is provided as well as a connection to the Stern-Brocot tree and a convenient means of representation for each in terms of 2×2 matrices with integer elements. This representation will provide a useful way of navigating the Stern-Brocot tree computationally and permit us a means of computing continued fractions without the …


The Generalized Riemann Hypothesis And Applications To Primality Testing, Peter Hall May 2021

The Generalized Riemann Hypothesis And Applications To Primality Testing, Peter Hall

University Scholar Projects

The Riemann Hypothesis, posed in 1859 by Bernhard Riemann, is about zeros
of the Riemann zeta-function in the complex plane. The zeta-function can be repre-
sented as a sum over positive integers n of terms 1/ns when s is a complex number
with real part greater than 1. It may also be represented in this region as a prod-
uct over the primes called an Euler product. These definitions of the zeta-function
allow us to find other representations that are valid in more of the complex plane,
including a product representation over its zeros. The Riemann Hypothesis says that
all …


Zeta Function Regularization And Its Relationship To Number Theory, Stephen Wang May 2021

Zeta Function Regularization And Its Relationship To Number Theory, Stephen Wang

Electronic Theses and Dissertations

While the "path integral" formulation of quantum mechanics is both highly intuitive and far reaching, the path integrals themselves often fail to converge in the usual sense. Richard Feynman developed regularization as a solution, such that regularized path integrals could be calculated and analyzed within a strictly physics context. Over the past 50 years, mathematicians and physicists have retroactively introduced schemes for achieving mathematical rigor in the study and application of regularized path integrals. One such scheme was introduced in 2007 by the mathematicians Klaus Kirsten and Paul Loya. In this thesis, we reproduce the Kirsten and Loya approach to …


A Case Study On Hooley's Conditional Proof Of Artin's Primitive Root Conjecture, Shalome Kurian Jan 2021

A Case Study On Hooley's Conditional Proof Of Artin's Primitive Root Conjecture, Shalome Kurian

Rose-Hulman Undergraduate Mathematics Journal

Artin’s Primitive Root Conjecture represents one of many famous problems in elementary number theory that has resisted complete solution thus far. Significant progress was made in 1967, when Christopher Hooley published a conditional proof of the conjecture under the assumption of a certain case of the Generalised Riemann Hypothesis. In this survey we present a description of the conjecture and the underlying algebraic theory, and provide a detailed account of Hooley’s proof which is intended to be accessible to those with only undergraduate level knowledge. We also discuss a result concerning the qx+1 problem, whose proof requires similar techniques to …


On The Local Theory Of Profinite Groups, Mohammad Shatnawi Dec 2020

On The Local Theory Of Profinite Groups, Mohammad Shatnawi

Dissertations

Let G be a finite group, and H be a subgroup of G. The transfer homomorphism emerges from the natural action of G on the cosets of H. The transfer was first introduced by Schur in 1902 [22] as a construction in group theory, which produce a homomorphism from a finite group G into H/H' an abelian group where H is a subgroup of G and H' is the derived group of H. One important first application is Burnside’s normal p-complement theorem [5] in 1911, although he did not use the transfer homomorphism explicitly to prove it. …


The Name Tag Problem, Christian Carley Nov 2020

The Name Tag Problem, Christian Carley

Rose-Hulman Undergraduate Mathematics Journal

The Name Tag Problem is a thought experiment that, when formalized, serves as an introduction to the concept of an orthomorphism of $\Zn$. Orthomorphisms are a type of group permutation and their graphs are used to construct mutually orthogonal Latin squares, affine planes and other objects. This paper walks through the formalization of the Name Tag Problem and its linear solutions, which center around modular arithmetic. The characterization of which linear mappings give rise to these solutions developed in this paper can be used to calculate the exact number of linear orthomorphisms for any additive group Z/nZ, which is demonstrated …


An In-Depth Look At P-Adic Numbers, Xiaona Zhou May 2020

An In-Depth Look At P-Adic Numbers, Xiaona Zhou

Publications and Research

In this study, we consider $p$-adic numbers. We will also study the $p$-adic norm representation of real number, which is defined as $\mathbb{Q}_p = \{\sum_{j=m}^{\infty }a_j p^j: a_j \in \mathbb{D}_p, m\in\mathbb{Z}, a_m\neq 0\} \cup \{0\}$, where $p$ is a prime number. We explore properties of the $p$-adics by using examples. In particular, we will show that $\sqrt{6},i \in \mathbb{Q}_5$ and $\sqrt{2} \in \mathbb{Q}_7 $. $p$-adic numbers have a wide range of applicationsnin fields such as string theory, quantum mechanics, and transportation in porous disordered media in geology.


Classification Of Torsion Subgroups For Mordell Curves, Zachary Porat Mar 2020

Classification Of Torsion Subgroups For Mordell Curves, Zachary Porat

Honors Theses

Elliptic curves are an interesting area of study in mathematics, laying at the intersection of algebra, geometry, and number theory. They are a powerful tool, having applications in everything from Andrew Wiles’ proof of Fermat’s Last Theorem to cybersecurity. In this paper, we first provide an introduction to elliptic curves by discussing their geometry and associated group structure. We then narrow our focus, further investigating the torsion subgroups of elliptic curves. In particular, we will examine two methods used to classify these subgroups. We finish by employing these methods to categorize the torsion subgroups for a specific family of elliptic …


On The Equality Case Of The Ramanujan Conjecture For Hilbert Modular Forms, Liubomir Chiriac Nov 2019

On The Equality Case Of The Ramanujan Conjecture For Hilbert Modular Forms, Liubomir Chiriac

Mathematics and Statistics Faculty Publications and Presentations

The generalized Ramanujan Conjecture for cuspidal unitary automorphic representations π on GL(2) asserts that |av(π)| ≤ 2. We prove that this inequality is strict if π is generated by a CM Hilbert modular form of parallel weight two and v is a finite place of degree one. Equivalently, the Satake parameters of πv are necessarily distinct. We also give examples where the equality case does occur for primes of degree two.


Inquiry In Inquiry: A Classification Of The Learning Theories Underlying Inquiry-Based Undergraduate Number Theory Texts, Rebecca L. Butler Jun 2019

Inquiry In Inquiry: A Classification Of The Learning Theories Underlying Inquiry-Based Undergraduate Number Theory Texts, Rebecca L. Butler

Honors Projects

While undergraduate inquiry-based texts in number theory share similar approaches with respect to learning as the embodiment of professional practice, this does not entail that these texts all operate from the same fundamental understanding of what it means to learn mathematics. In this paper, the instructional design of several texts of the aforementioned types are analyzed to assess the theory of learning under which they operate. From this understanding of the different theories of learning employed in an inquiry-based mathematical setting, one can come to understand the popular model of what it is to learn number theory in a meaningful …


Vector Partitions, Jennifer French May 2018

Vector Partitions, Jennifer French

Electronic Theses and Dissertations

Integer partitions have been studied by many mathematicians over hundreds of years. Many identities exist between integer partitions, such as Euler’s discovery that every number has the same amount of partitions into distinct parts as into odd parts. These identities can be proven using methods such as conjugation or generating functions. Over the years, mathematicians have worked to expand partition identities to vectors. In 1963, M. S. Cheema proved that every vector has the same number of partitions into distinct vectors as into vectors with at least one component odd. This parallels Euler’s result for integer partitions. The primary purpose …


Pgl2(FL) Number Fields With Rational Companion Forms, David P. Roberts Apr 2018

Pgl2(FL) Number Fields With Rational Companion Forms, David P. Roberts

Mathematics Publications

We give a list of PGL2(Fl) number fields for ℓ ≥ 11 which have rational companion forms. Our list has fifty-three fields and seems likely to be complete. Some of the fields on our list are very lightly ramified for their Galois group.


Number Theory: Niven Numbers, Factorial Triangle, And Erdos' Conjecture, Sarah Riccio Apr 2018

Number Theory: Niven Numbers, Factorial Triangle, And Erdos' Conjecture, Sarah Riccio

Mathematics Undergraduate Publications

In this paper, three topics in number theory will be explored: Niven Numbers, the Factorial Triangle, and Erdos's Conjecture . For each of these topics, the goal is for us to find patterns within the numbers which help us determine all possible values in each category. We will look at two digit Niven Numbers and the set that they belong to, the alternating summation of the rows of the Factorial Triangle, and the unit fractions whose sum is the basis of Erdos' Conjecture.


The Pell Equation In India, Toke Knudsen, Keith Jones Oct 2017

The Pell Equation In India, Toke Knudsen, Keith Jones

Number Theory

No abstract provided.