Open Access. Powered by Scholars. Published by Universities.®

Number Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Number Theory

Cayley Graphs Of Semigroups And Applications To Hashing, Bianca Sosnovski Jun 2016

Cayley Graphs Of Semigroups And Applications To Hashing, Bianca Sosnovski

Dissertations, Theses, and Capstone Projects

In 1994, Tillich and Zemor proposed a scheme for a family of hash functions that uses products of matrices in groups of the form $SL_2(F_{2^n})$. In 2009, Grassl et al. developed an attack to obtain collisions for palindromic bit strings by exploring a connection between the Tillich-Zemor functions and maximal length chains in the Euclidean algorithm for polynomials over $F_2$.

In this work, we present a new proposal for hash functions based on Cayley graphs of semigroups. In our proposed hash function, the noncommutative semigroup of linear functions under composition is considered as platform for the scheme. We will also …


Counting Solutions To Discrete Non-Algebraic Equations Modulo Prime Powers, Abigail Mann May 2016

Counting Solutions To Discrete Non-Algebraic Equations Modulo Prime Powers, Abigail Mann

Mathematical Sciences Technical Reports (MSTR)

As society becomes more reliant on computers, cryptographic security becomes increasingly important. Current encryption schemes include the ElGamal signature scheme, which depends on the complexity of the discrete logarithm problem. It is thought that the functions that such schemes use have inverses that are computationally intractable. In relation to this, we are interested in counting the solutions to a generalization of the discrete logarithm problem modulo a prime power. This is achieved by interpolating to p-adic functions, and using Hensel's lemma, or other methods in the case of singular lifting, and the Chinese Remainder Theorem.


Statistical Analysis Of Binary Functional Graphs Of The Discrete Logarithm, Mitchell Orzech May 2016

Statistical Analysis Of Binary Functional Graphs Of The Discrete Logarithm, Mitchell Orzech

Mathematical Sciences Technical Reports (MSTR)

The increased use of cryptography to protect our personal information makes us want to understand the security of cryptosystems. The security of many cryptosystems relies on solving the discrete logarithm, which is thought to be relatively difficult. Therefore, we focus on the statistical analysis of certain properties of the graph of the discrete logarithm. We discovered the expected value and variance of a certain property of the graph and compare the expected value to experimental data. Our finding did not coincide with our intuition of the data following a Gaussian distribution given a large sample size. Thus, we found the …


A Cryptographic Attack: Finding The Discrete Logarithm On Elliptic Curves Of Trace One, Tatiana Bradley Jan 2015

A Cryptographic Attack: Finding The Discrete Logarithm On Elliptic Curves Of Trace One, Tatiana Bradley

Scripps Senior Theses

The crux of elliptic curve cryptography, a popular mechanism for securing data, is an asymmetric problem. The elliptic curve discrete logarithm problem, as it is called, is hoped to be generally hard in one direction but not the other, and it is this asymmetry that makes it secure.

This paper describes the mathematics (and some of the computer science) necessary to understand and compute an attack on the elliptic curve discrete logarithm problem that works in a special case. The algorithm, proposed by Nigel Smart, renders the elliptic curve discrete logarithm problem easy in both directions for elliptic curves of …


Deconstructing The Welch Equation Using P-Adic Methods, Abigail Mann, Adelyn Yeoh Jul 2014

Deconstructing The Welch Equation Using P-Adic Methods, Abigail Mann, Adelyn Yeoh

Mathematical Sciences Technical Reports (MSTR)

The Welch map x -> gx-1+c is similar to the discrete exponential map x -> gx, which is used in many cryptographic applications including the ElGamal signature scheme. This paper analyzes the number of solutions to the Welch equation: gx-1+c = x (mod pe) where p is a prime, and looks at other patterns of the equation that could possibly exploited in a similar cryptographic system. Since the equation is modulo pe, where p is a prime number, p-adic methods of analysis are used in counting the number of solutions modulo p …


Deconstructing The Welch Equation Using P-Adic Methods, Abigail Mann, Adelyn Yeoh Jul 2014

Deconstructing The Welch Equation Using P-Adic Methods, Abigail Mann, Adelyn Yeoh

Rose-Hulman Undergraduate Research Publications

The Welch map x -> gx-1+c is similar to the discrete exponential map x -> gx, which is used in many cryptographic applications including the ElGamal signature scheme. This paper analyzes the number of solutions to the Welch equation: gx-1+c = x (mod pe) where p is a prime, and looks at other patterns of the equation that could possibly exploited in a similar cryptographic system. Since the equation is modulo pe, where p is a prime number, p-adic methods of analysis are used in counting the number of solutions modulo p …


A Statistical Look At Maps Of The Discrete Logarithm, Nathan Lindle May 2008

A Statistical Look At Maps Of The Discrete Logarithm, Nathan Lindle

Mathematical Sciences Technical Reports (MSTR)

Cryptography is being used today more than it ever has in the past. Millions of transactions are being conducted every hour using encrypted channels, most of which use the Internet as their medium. It is taken for granted by the average user that these transaction are secure, but mathematicians and computer scientists alike are constantly testing the algorithms being used. Several of these cryptosystems use the transformation

gx = y (mod n)

The appeal of this transformation is that it is quite simple to calculate gx mod n; exponentiation by squaring is fairly simple and quick even using …


Mapping The Discrete Logarithm, Daniel R. Cloutier Jul 2005

Mapping The Discrete Logarithm, Daniel R. Cloutier

Mathematical Sciences Technical Reports (MSTR)

The discrete logarithm is a problem that surfaces frequently in the field of cryptog- raphy as a result of using the transformation ga mod n. This paper focuses on a prime modulus, p, for which it is shown that the basic structure of the functional graph is largely dependent on an interaction between g and p-1. In fact, there are precisely as many different functional graph structures as there are divisors of p-1. This paper extracts two of these structures, permutations and binary functional graphs. Estimates exist for the shape of a random permutation, but …


Fixed Point And Two-Cycles Of The Discrete Logarithm, Joshua Holden Oct 2002

Fixed Point And Two-Cycles Of The Discrete Logarithm, Joshua Holden

Mathematical Sciences Technical Reports (MSTR)

We explore some questions related to one of Brizolis: does every prime p have a pair (g, h) such that h is a fixed point for the discrete logarithm with base g? We extend this question to ask about not only fixed points but also two-cycles. Campbell and Pomerance have not only answered the fixed point question for sufficiently large p but have also rigorously estimated the number of such pairs given certain conditions on g and h. We attempt to give heuristics for similar estimates given other conditions on g and h and also in the case …