Open Access. Powered by Scholars. Published by Universities.®

Number Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Number Theory

Meertens Number And Its Variations, Chai Wah Wu Dec 2022

Meertens Number And Its Variations, Chai Wah Wu

Communications on Number Theory and Combinatorial Theory

In 1998, Bird introduced Meertens numbers as numbers that are invariant under a map similar to the Gödel encoding. In base 10, the only known Meertens number is 81312000. We look at some properties of Meertens numbers and consider variations of this concept. In particular, we consider variations of Meertens numbers where there is a finite time algorithm to decide whether such numbers exist, exhibit infinite families of these variations and provide bounds on parameters needed for their existence.


Proving Dirichlet's Theorem On Arithmetic Progressions, Owen T. Abma Aug 2022

Proving Dirichlet's Theorem On Arithmetic Progressions, Owen T. Abma

Undergraduate Student Research Internships Conference

First proved by German mathematician Dirichlet in 1837, this important theorem states that for coprime integers a, m, there are an infinite number of primes p such that p = a (mod m). This is one of many extensions of Euclid’s theorem that there are infinitely many prime numbers. In this paper, we will formulate a rather elegant proof of Dirichlet’s theorem using ideas from complex analysis and group theory.


On The Iwasawa Invariants Of Nonordinary Modular Forms, Rylan J. Gajek-Leonard Jun 2022

On The Iwasawa Invariants Of Nonordinary Modular Forms, Rylan J. Gajek-Leonard

Doctoral Dissertations

We extend known results on the behavior of Iwasawa invariants attached to Mazur-Tate elements for p-nonordinary modular forms of weight k=2 to higher weight modular forms with a_p=0. This is done by using a decomposition of the p-adic L-function due to R. Pollack in order to construct explicit lifts of Mazur-Tate elements to the full Iwasawa algebra. We then study the behavior of Iwasawa invariants upon projection to finite layers, allowing us to express the invariants of Mazur-Tate elements in terms of those coming from plus/minus p-adic L-functions. Our results combine with work of Pollack and Weston to relate the …


Structure Of Number Theoretic Graphs, Lee Trent May 2022

Structure Of Number Theoretic Graphs, Lee Trent

Mathematical Sciences Technical Reports (MSTR)

The tools of graph theory can be used to investigate the structure
imposed on the integers by various relations. Here we investigate two
kinds of graphs. The first, a square product graph, takes for its vertices
the integers 1 through n, and draws edges between numbers whose product
is a square. The second, a square product graph, has the same vertex set,
and draws edges between numbers whose sum is a square.
We investigate the structure of these graphs. For square product
graphs, we provide a rather complete characterization of their structure as
a union of disjoint complete graphs. For …


Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis May 2022

Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis

Student Research

While doing research looking for ways to categorize causal networks generated by Sequential Substitution Systems, I created a new notation to compactly summarize concatenations of integers or strings of integers, including infinite sequences of these, in the same way that sums, products, and unions of sets can be summarized. Using my method, any sequence of integers or strings of integers with a closed-form iterative pattern can be compactly summarized in just one line of mathematical notation, including graphs generated by Sequential Substitution Systems, many Primitive Pythagorean Triplets, and various Lucas sequences including the Fibonacci sequence and the sequence of square …


The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles May 2022

The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles

Electronic Theses, Projects, and Dissertations

This thesis is centered around the construction and analysis of the principal arithmetic surface (3, 5) over Q. By adjoining the two symbols i,j, where i2 = 3, j2 = 5, such that ij = -ji, I can produce a quaternion algebra over Q. I use this quaternion algebra to find a discrete subgroup of SL2(R), which I identify with isometries of the hyperbolic plane. From this quaternion algebra, I produce a large list of matrices and apply them via Mobius transformations to the point (0, 2), which is the center of my Dirichlet domain. This …