Open Access. Powered by Scholars. Published by Universities.®

Harmonic Analysis and Representation Commons

Open Access. Powered by Scholars. Published by Universities.®

42C15

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Harmonic Analysis and Representation

Harmonic Equiangular Tight Frames Comprised Of Regular Simplices, Matthew C. Fickus, Courtney A. Schmitt Feb 2020

Harmonic Equiangular Tight Frames Comprised Of Regular Simplices, Matthew C. Fickus, Courtney A. Schmitt

Faculty Publications

An equiangular tight frame (ETF) is a sequence of unit-norm vectors in a Euclidean space whose coherence achieves equality in the Welch bound, and thus yields an optimal packing in a projective space. A regular simplex is a simple type of ETF in which the number of vectors is one more than the dimension of the underlying space. More sophisticated examples include harmonic ETFs which equate to difference sets in finite abelian groups. Recently, it was shown that some harmonic ETFs are comprised of regular simplices. In this paper, we continue the investigation into these special harmonic ETFs. We begin …


Polyphase Equiangular Tight Frames And Abelian Generalized Quadrangles, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson Nov 2019

Polyphase Equiangular Tight Frames And Abelian Generalized Quadrangles, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson

Faculty Publications

An equiangular tight frame (ETF) is a type of optimal packing of lines in a finite-dimensional Hilbert space. ETFs arise in various applications, such as waveform design for wireless communication, compressed sensing, quantum information theory and algebraic coding theory. In a recent paper, signature matrices of ETFs were constructed from abelian distance regular covers of complete graphs. We extend this work, constructing ETF synthesis operators from abelian generalized quadrangles, and vice versa. This produces a new infinite family of complex ETFs as well as a new proof of the existence of certain generalized quadrangles. This work involves designing matrices whose …


Equiangular Tight Frames With Centroidal Symmetry, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson Mar 2018

Equiangular Tight Frames With Centroidal Symmetry, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson

Faculty Publications

An equiangular tight frame (ETF) is a set of unit vectors whose coherence achieves the Welch bound, and so is as incoherent as possible. Though they arise in many applications, only a few methods for constructing them are known. Motivated by the connection between real ETFs and graph theory, we introduce the notion of ETFs that are symmetric about their centroid. We then discuss how well-known constructions, such as harmonic ETFs and Steiner ETFs, can have centroidal symmetry. Finally, we establish a new equivalence between centroid-symmetric real ETFs and certain types of strongly regular graphs (SRGs). Together, these results give …


A Generalized Schur–Horn Theorem And Optimal Frame Completions, Matthew C. Fickus, Justin D. Marks, Miriam J. Poteet May 2016

A Generalized Schur–Horn Theorem And Optimal Frame Completions, Matthew C. Fickus, Justin D. Marks, Miriam J. Poteet

Faculty Publications

The Schur-Horn theorem is a classical result in matrix analysis which characterizes the existence of positive semi-definite matrices with a given diagonal and spectrum. In recent years, this theorem has been used to characterize the existence of finite frames whose elements have given lengths and whose frame operator has a given spectrum. We provide a new generalization of the Schur-Horn theorem which characterizes the spectra of all possible finite frame completions. That is, we characterize the spectra of the frame operators of the finite frames obtained by adding new vectors of given lengths to an existing frame. We then exploit …