Open Access. Powered by Scholars. Published by Universities.®

Algebra Commons

Open Access. Powered by Scholars. Published by Universities.®

Discrete Mathematics and Combinatorics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 222

Full-Text Articles in Algebra

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson Dec 2023

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson

Cybersecurity Undergraduate Research Showcase

The RSA encryption algorithm has secured many large systems, including bank systems, data encryption in emails, several online transactions, etc. Benefiting from the use of asymmetric cryptography and properties of number theory, RSA was widely regarded as one of most difficult algorithms to decrypt without a key, especially since by brute force, breaking the algorithm would take thousands of years. However, in recent times, research has shown that RSA is getting closer to being efficiently decrypted classically, using algebraic methods, (fully cracked through limited bits) in which elliptic-curve cryptography has been thought of as the alternative that is stronger than …


The Gamma-Signless Laplacian Adjacency Matrix Of Mixed Graphs, Omar Alomari, Mohammad Abudayah, Manal Ghanem Aug 2023

The Gamma-Signless Laplacian Adjacency Matrix Of Mixed Graphs, Omar Alomari, Mohammad Abudayah, Manal Ghanem

Theory and Applications of Graphs

The α-Hermitian adjacency matrix Hα of a mixed graph X has been recently introduced. It is a generalization of the adjacency matrix of unoriented graphs. In this paper, we consider a special case of the complex number α. This enables us to define an incidence matrix of mixed graphs. Consequently, we define a generalization of line graphs as well as a generalization of the signless Laplacian adjacency matrix of graphs. We then study the spectral properties of the gamma-signless Laplacian adjacency matrix of a mixed graph. Lastly, we characterize when the signless Laplacian adjacency matrix of …


Generating Polynomials Of Exponential Random Graphs, Mohabat Tarkeshian Aug 2023

Generating Polynomials Of Exponential Random Graphs, Mohabat Tarkeshian

Electronic Thesis and Dissertation Repository

The theory of random graphs describes the interplay between probability and graph theory: it is the study of the stochastic process by which graphs form and evolve. In 1959, Erdős and Rényi defined the foundational model of random graphs on n vertices, denoted G(n, p) ([ER84]). Subsequently, Frank and Strauss (1986) added a Markov twist to this story by describing a topological structure on random graphs that encodes dependencies between local pairs of vertices ([FS86]). The general model that describes this framework is called the exponential random graph model (ERGM).

In the past, determining when a probability distribution has strong …


Representations From Group Actions On Words And Matrices, Joel T. Anderson Jun 2023

Representations From Group Actions On Words And Matrices, Joel T. Anderson

Master's Theses

We provide a combinatorial interpretation of the frequency of any irreducible representation of Sn in representations of Sn arising from group actions on words. Recognizing that representations arising from group actions naturally split across orbits yields combinatorial interpretations of the irreducible decompositions of representations from similar group actions. The generalization from group actions on words to group actions on matrices gives rise to representations that prove to be much less transparent. We share the progress made thus far on the open problem of determining the irreducible decomposition of certain representations of Sm × Sn arising from group actions on matrices.


Automorphisms Of A Generalized Quadrangle Of Order 6, Ryan Pesak May 2023

Automorphisms Of A Generalized Quadrangle Of Order 6, Ryan Pesak

Undergraduate Honors Theses

In this thesis, we study the symmetries of the putative generalized quadrangle of order 6. Although it is unknown whether such a quadrangle Q can exist, we show that if it does, that Q cannot be transitive on either points or lines. We first cover the background necessary for studying this problem. Namely, the theory of groups and group actions, the theory of generalized quadrangles, and automorphisms of GQs. We then prove that a generalized quadrangle Q of order 6 cannot have a point- or line-transitive automorphism group, and we also prove that if a group G acts faithfully on …


Cohen-Macaulay Properties Of Closed Neighborhood Ideals, Jackson Leaman May 2023

Cohen-Macaulay Properties Of Closed Neighborhood Ideals, Jackson Leaman

All Theses

This thesis investigates Cohen-Macaulay properties of squarefree monomial ideals, which is an important line of inquiry in the field of combinatorial commutative algebra. A famous example of this is Villareal’s edge ideal [11]: given a finite simple graph G with vertices x1, . . . , xn, the edge ideal of G is generated by all the monomials of the form xixj where xi and xj are adjacent in G. Villareal’s characterization of Cohen-Macaulay edge ideals associated to trees is an often-cited result in the literature. This was extended to chordal and bipartite graphs by Herzog, Hibi, and Zheng in …


Roots Of Quaternionic Polynomials And Automorphisms Of Roots, Olalekan Ogunmefun May 2023

Roots Of Quaternionic Polynomials And Automorphisms Of Roots, Olalekan Ogunmefun

Electronic Theses and Dissertations

The quaternions are an extension of the complex numbers which were first described by Sir William Rowan Hamilton in 1843. In his description, he gave the equation of the multiplication of the imaginary component similar to that of complex numbers. Many mathematicians have studied the zeros of quaternionic polynomials. Prominent of these, Ivan Niven pioneered a root-finding algorithm in 1941, Gentili and Struppa proved the Fundamental Theorem of Algebra (FTA) for quaternions in 2007. This thesis finds the zeros of quaternionic polynomials using the Fundamental Theorem of Algebra. There are isolated zeros and spheres of zeros. In this thesis, we …


A Stronger Strong Schottky Lemma For Euclidean Buildings, Michael E. Ferguson Feb 2023

A Stronger Strong Schottky Lemma For Euclidean Buildings, Michael E. Ferguson

Dissertations, Theses, and Capstone Projects

We provide a criterion for two hyperbolic isometries of a Euclidean building to generate a free group of rank two. In particular, we extend the application of a Strong Schottky Lemma to buildings given by Alperin, Farb and Noskov. We then use this extension to obtain an infinite family of matrices that generate a free group of rank two. In doing so, we also introduce an algorithm that terminates in finite time if the lemma is applicable for pairs of certain kinds of matrices acting on the Euclidean building for the special linear group over certain discretely valued fields.


Q-Polymatroids And Their Application To Rank-Metric Codes., Benjamin Jany Jan 2023

Q-Polymatroids And Their Application To Rank-Metric Codes., Benjamin Jany

Theses and Dissertations--Mathematics

Matroid theory was first introduced to generalize the notion of linear independence. Since its introduction, the theory has found many applications in various areas of mathematics including coding theory. In recent years, q-matroids, the q-analogue of matroids, were reintroduced and found to be closely related to the theory of linear vector rank metric codes. This relation was then generalized to q-polymatroids and linear matrix rank metric codes. This dissertation aims at developing the theory of q-(poly)matroid and its relation to the theory of rank metric codes. In a first part, we recall and establish preliminary results for both q-polymatroids and …


Cayley Map Embeddings Of Complete Graphs With Even Order, Michael O'Connor Jan 2023

Cayley Map Embeddings Of Complete Graphs With Even Order, Michael O'Connor

Honors Program Theses

German mathematician Claus Michael Ringel used voltage graphs to embed complete graphs onto orientable surfaces such that none of the graph's edges cross each other. Cayley maps do the same whilst being simpler to work with. The goal is to determine the efficiency of Cayley maps in embedding complete graphs onto orientable surfaces. This article focus on complete graphs of even order with an emphasis on graphs whose orders are congruent to 6 modulo 12 and 0 modulo 12. We establish 12 distinct classes that each have their own unique qualities. Through the generalization of a previous technique, we prove …


Quasisymmetric Functions Distinguishing Trees, Jean-Christophe Aval, Karimatou Djenabou, Peter R. W. Mcnamara Jan 2023

Quasisymmetric Functions Distinguishing Trees, Jean-Christophe Aval, Karimatou Djenabou, Peter R. W. Mcnamara

Faculty Journal Articles

A famous conjecture of Stanley states that his chromatic symmetric function distinguishes trees. As a quasisymmetric analogue, we conjecture that the chromatic quasisymmetric function of Shareshian and Wachs and of Ellzey distinguishes directed trees. This latter conjecture would be implied by an affirmative answer to a question of Hasebe and Tsujie about the P-partition enumerator distinguishing posets whose Hasse diagrams are trees. They proved the case of rooted trees and our results include a generalization of their result.


An Inquiry Into Lorentzian Polynomials, Tomás Aguilar-Fraga Jan 2023

An Inquiry Into Lorentzian Polynomials, Tomás Aguilar-Fraga

HMC Senior Theses

In combinatorics, it is often desirable to show that a sequence is unimodal. One method of establishing this is by proving the stronger yet easier-to-prove condition of being log-concave, or even ultra-log-concave. In 2019, Petter Brändén and June Huh introduced the concept of Lorentzian polynomials, an exciting new tool which can help show that ultra-log-concavity holds in specific cases. My thesis investigates these Lorentzian polynomials, asking in which situations they are broadly useful. It covers topics such as matroid theory, discrete convexity, and Mason’s conjecture, a long-standing open problem in matroid theory. In addition, we discuss interesting applications to known …


Long Increasing Subsequences, Hannah Friedman Jan 2023

Long Increasing Subsequences, Hannah Friedman

HMC Senior Theses

In my thesis, I investigate long increasing subsequences of permutations from two angles. Motivated by studying interpretations of the longest increasing subsequence statistic across different representations of permutations, we investigate the relationship between reduced words for permutations and their RSK tableaux in Chapter 3. In Chapter 4, we use permutations with long increasing subsequences to construct a basis for the space of 𝑘-local functions.


Permutations, Representations, And Partition Algebras: A Random Walk Through Algebraic Statistics, Ian Shors Jan 2023

Permutations, Representations, And Partition Algebras: A Random Walk Through Algebraic Statistics, Ian Shors

HMC Senior Theses

My thesis examines a class of functions on the symmetric group called permutation statistics using tools from representation theory. In 2014, Axel Hultman gave formulas for computing expected values of permutation statistics sampled via random walks. I present analogous formulas for computing variances of these statistics involving Kronecker coefficients – certain numbers that arise in the representation theory of the symmetric group. I also explore deep connections between the study of moments of permutation statistics and the representation theory of the partition algebras, a family of algebras introduced by Paul Martin in 1991. By harnessing these partition algebras, I derive …


The Multiset Partition Algebra: Diagram-Like Bases And Representations, Alexander N. Wilson Jan 2023

The Multiset Partition Algebra: Diagram-Like Bases And Representations, Alexander N. Wilson

Dartmouth College Ph.D Dissertations

There is a classical connection between the representation theory of the symmetric group and the general linear group called Schur--Weyl Duality. Variations on this principle yield analogous connections between the symmetric group and other objects such as the partition algebra and more recently the multiset partition algebra. The partition algebra has a well-known basis indexed by graph-theoretic diagrams which allows the multiplication in the algebra to be understood visually as combinations of these diagrams. My thesis begins with a construction of an analogous basis for the multiset partition algebra. It continues with applications of this basis to constructing the irreducible …


Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi Jan 2023

Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi

Undergraduate Research Posters

We study hypergraphs by attaching a nilpotent strong homotopy Lie algebra. We especially focus on hypergraph theoretic information that is encoded in the cohomology of the resulting strong homotopy Lie algebra.


The Lie Algebra Sl2(C) And Krawtchouk Polynomials, Nkosi Alexander Jan 2023

The Lie Algebra Sl2(C) And Krawtchouk Polynomials, Nkosi Alexander

UNF Graduate Theses and Dissertations

The Lie algebra L = sl2(C) consists of the 2 × 2 complex matrices that have trace zero, together with the Lie bracket [y, z] = yz − zy. In this thesis we study a relationship between L and Krawtchouk polynomials. We consider a type of element in L said to be normalized semisimple. Let a, a^∗ be normalized semisimple elements that generate L. We show that a, a^∗ satisfy a pair of relations, called the Askey-Wilson relations. For a positive integer N, we consider an (N + 1)-dimensional irreducible L-module V consisting of the homogeneous polynomials in two variables …


(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries, Hacène Belbachir, Amine Belkhir, Ihab-Eddine Djellas Dec 2022

(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries, Hacène Belbachir, Amine Belkhir, Ihab-Eddine Djellas

Applications and Applied Mathematics: An International Journal (AAM)

In the present paper, we evaluate the permanent and determinant of some Toeplitz-Hessenberg matrices with generalized Fibonacci and generalized Lucas numbers as entries.We develop identities involving sums of products of generalized Fibonacci numbers and generalized Lucas numbers with multinomial coefficients using the matrix structure, and then we present an application of the determinant of such matrices.


Extension Of Fundamental Transversals And Euler’S Polyhedron Theorem, Joy Marie D'Andrea Nov 2022

Extension Of Fundamental Transversals And Euler’S Polyhedron Theorem, Joy Marie D'Andrea

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Minimal Differential Graded Algebra Resolutions Related To Certain Stanley-Reisner Rings, Todd Anthony Morra Aug 2022

Minimal Differential Graded Algebra Resolutions Related To Certain Stanley-Reisner Rings, Todd Anthony Morra

All Dissertations

We investigate algebra structures on resolutions of a special class of Cohen-Macaulay simplicial complexes. Given a simplicial complex, we define a pure simplicial complex called the purification. These complexes arise as a generalization of certain independence complexes and the resultant Stanley-Reisner rings have numerous desirable properties, e.g., they are Cohen-Macaulay. By realizing the purification in the context of work of D'alì, et al., we obtain a multi-graded, minimal free resolution of the Alexander dual ideal of the Stanley-Reisner ideal. We augment this in a standard way to obtain a resolution of the quotient ring, which is likewise minimal and multi-graded. …


Characteristic Sets Of Matroids, Dony Varghese Aug 2022

Characteristic Sets Of Matroids, Dony Varghese

Doctoral Dissertations

Matroids are combinatorial structures that generalize the properties of linear independence. But not all matroids have linear representations. Furthermore, the existence of linear representations depends on the characteristic of the fields, and the linear characteristic set is the set of characteristics of fields over which a matroid has a linear representation. The algebraic independence in a field extension also defines a matroid, and also depends on the characteristic of the fields. The algebraic characteristic set is defined in the similar way as the linear characteristic set.

The linear representations and characteristic sets are well studied. But the algebraic representations and …


Harmonious Labelings Via Cosets And Subcosets, Jared L. Painter, Holleigh C. Landers, Walker M. Mattox Jul 2022

Harmonious Labelings Via Cosets And Subcosets, Jared L. Painter, Holleigh C. Landers, Walker M. Mattox

Theory and Applications of Graphs

In [Abueida, A. and Roblee, K., More harmonious labelings of families of disjoint unions of an odd cycle and certain trees, J. Combin. Math. Combin. Comput., 115 (2020), 61-68] it is shown that the disjoint union of an odd cycle and certain paths is harmonious, and that certain starlike trees are harmonious using properties of cosets for a particular subgroup of the integers modulo m, where m is the number of edges of the graph. We expand upon these results by first exploring the numerical properties when adding values from cosets and subcosets in the integers modulo m. …


Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs Jun 2022

Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs

UNO Student Research and Creative Activity Fair

The University of Omaha math department's Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester's end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes.

Now there are three difficulty tiers to POW problems, roughly corresponding to …


Quantum Dimension Polynomials: A Networked-Numbers Game Approach, Nicholas Gaubatz May 2022

Quantum Dimension Polynomials: A Networked-Numbers Game Approach, Nicholas Gaubatz

Honors College Theses

The Networked-Numbers Game--a mathematical "game'' played on a simple graph--is incredibly accessible and yet surprisingly rich in content. The Game is known to contain deep connections to the finite-dimensional simple Lie algebras over the complex numbers. On the other hand, Quantum Dimension Polynomials (QDPs)--enumerative expressions traditionally understood through root systems--corresponding to the above Lie algebras are complicated to derive and often inaccessible to undergraduates. In this thesis, the Networked-Numbers Game is defined and some known properties are presented. Next, the significance of the QDPs as a method to count combinatorially interesting structures is relayed. Ultimately, a novel closed-form expression of …


Modern Theory Of Copositive Matrices, Yuqiao Li May 2022

Modern Theory Of Copositive Matrices, Yuqiao Li

Undergraduate Honors Theses

Copositivity is a generalization of positive semidefiniteness. It has applications in theoretical economics, operations research, and statistics. An $n$-by-$n$ real, symmetric matrix $A$ is copositive (CoP) if $x^T Ax \ge 0$ for any nonnegative vector $x \ge 0.$ The set of all CoP matrices forms a convex cone. A CoP matrix is ordinary if it can be written as the sum of a positive semidefinite (PSD) matrix and a symmetric nonnegative (sN) matrix. When $n < 5,$ all CoP matrices are ordinary. However, recognizing whether a given CoP matrix is ordinary and determining an ordinary decomposition (PSD + sN) is still an unsolved problem. Here, we give an overview on modern theory of CoP matrices, talk about our progress on the ordinary recognition and decomposition problem, and emphasis the graph theory aspect of ordinary CoP matrices.


The Enumeration Of Minimum Path Covers Of Trees, Merielyn Sher Apr 2022

The Enumeration Of Minimum Path Covers Of Trees, Merielyn Sher

Undergraduate Honors Theses

A path cover of a tree T is a collection of induced paths of T that are vertex disjoint and cover all the vertices of T. A minimum path cover (MPC) of T is a path cover with the minimum possible number of paths, and that minimum number is called the path cover number of T. A tree can have just one or several MPC's. Prior results have established equality between the path cover number of a tree T and the largest possible multiplicity of an eigenvalue that can occur in a symmetric matrix whose graph is that tree. We …


Counting The Moduli Space Of Pentagons On Finite Projective Planes, Maxwell Hosler Jan 2022

Counting The Moduli Space Of Pentagons On Finite Projective Planes, Maxwell Hosler

Senior Independent Study Theses

Finite projective planes are finite incidence structures which generalize the concept of the real projective plane. In this paper, we consider structures of points embedded in these planes. In particular, we investigate pentagons in general position, meaning no three vertices are colinear. We are interested in properties of these pentagons that are preserved by collineation of the plane, and so can be conceived as properties of the equivalence class of polygons up to collineation as a whole. Amongst these are the symmetries of a pentagon and the periodicity of the pentagon under the pentagram map, and a generalization of …


Dot Product Bounds In Galois Rings, David Lee Crosby Jan 2022

Dot Product Bounds In Galois Rings, David Lee Crosby

MSU Graduate Theses

We consider the Erdős Distance Conjecture in the context of dot products in Galois rings and prove results for single dot products and pairs of dot products.


Categorical Aspects Of Graphs, Jacob D. Ender Aug 2021

Categorical Aspects Of Graphs, Jacob D. Ender

Undergraduate Student Research Internships Conference

In this article, we introduce a categorical characterization of directed and undirected graphs, and explore subcategories of reflexive and simple graphs. We show that there are a number of adjunctions between such subcategories, exploring varying combinations of graph types.