Open Access. Powered by Scholars. Published by Universities.®

Algebra Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 147

Full-Text Articles in Algebra

Rsa Algorithm, Evalisbeth Garcia Diazbarriga Apr 2024

Rsa Algorithm, Evalisbeth Garcia Diazbarriga

ATU Research Symposium

I will be presenting about the RSA method in cryptology which is the coding and decoding of messages. My research will focus on proving that the method works and how it is used to communicate secretly.


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Efficient And Secure Digital Signature Algorithm (Dsa), Nissa Mehibel, M'Hamed Hamadouche Aug 2023

Efficient And Secure Digital Signature Algorithm (Dsa), Nissa Mehibel, M'Hamed Hamadouche

Emirates Journal for Engineering Research

The digital signature is used to ensure the integrity of messages as well as the authentication and non-repudiation of users. Today it has a very important role in information security. Digital signature is used in various fields such as e-commerce and e-voting, health, internet of things (IOT). Many digital signature schemes have been proposed, depending on the computational cost and security level. In this paper, we analyzed a recently proposed digital signature scheme based on the discrete logarithm problem (DLP). Our analysis shows that the scheme is not secure against the repeated random number attack to determine the secret keys …


Stability Of Cauchy's Equation On Δ+., Holden Wells Aug 2023

Stability Of Cauchy's Equation On Δ+., Holden Wells

Electronic Theses and Dissertations

The most famous functional equation f(x+y)=f(x)+f(y) known as Cauchy's equation due to its appearance in the seminal analysis text Cours d'Analyse (Cauchy 1821), was used to understand fundamental aspects of the real numbers and the importance of regularity assumptions in mathematical analysis. Since then, the equation has been abstracted and examined in many contexts. One such examination, introduced by Stanislaw Ulam and furthered by Donald Hyers, was that of stability. Hyers demonstrated that Cauchy's equation exhibited stability over Banach Spaces in the following sense: functions that approximately satisfy Cauchy's equation are approximated with the same level of error by functions …


Invariants Of 3-Braid And 4-Braid Links, Mark Essa Sukaiti May 2023

Invariants Of 3-Braid And 4-Braid Links, Mark Essa Sukaiti

Theses

In this study, we established a connection between the Chebyshev polynomial of the first kind and the Jones polynomial of generalized weaving knots of type W(3,n,m).
Through our analysis, we demonstrated that the coefficients of the Jones polynomial of weaving knots are essentially the Whitney numbers of Lucas lattices which allowed us to find an explicit formula for the Alexander polynomial of weaving knots of typeW(3,n).
In addition to confirming Fox’s trapezoidal conjecture, we also discussed the zeroes of the Alexander Polynomial of weaving knots of type W(3,n) as they relate to Hoste’s conjecture. In addition, …


A Graphical User Interface Using Spatiotemporal Interpolation To Determine Fine Particulate Matter Values In The United States, Kelly M. Entrekin Apr 2023

A Graphical User Interface Using Spatiotemporal Interpolation To Determine Fine Particulate Matter Values In The United States, Kelly M. Entrekin

Honors College Theses

Fine particulate matter or PM2.5 can be described as a pollution particle that has a diameter of 2.5 micrometers or smaller. These pollution particle values are measured by monitoring sites installed across the United States throughout the year. While these values are helpful, a lot of areas are not accounted for as scientists are not able to measure all of the United States. Some of these unmeasured regions could be reaching high PM2.5 values over time without being aware of it. These high values can be dangerous by causing or worsening health conditions, such as cardiovascular and lung diseases. Within …


Integrable Systems On Symmetric Spaces From A Quadratic Pencil Of Lax Operators, Rossen Ivanov Jan 2023

Integrable Systems On Symmetric Spaces From A Quadratic Pencil Of Lax Operators, Rossen Ivanov

Conference papers

The article surveys the recent results on integrable systems arising from quadratic pencil of Lax operator L, with values in a Hermitian symmetric space. The counterpart operator M in the Lax pair defines positive, negative and rational flows. The results are illustrated with examples from the A.III symmetric space. The modeling aspect of the arising higher order nonlinear Schrödinger equations is briefly discussed.


The Mceliece Cryptosystem As A Solution To The Post-Quantum Cryptographic Problem, Isaac Hanna Jan 2023

The Mceliece Cryptosystem As A Solution To The Post-Quantum Cryptographic Problem, Isaac Hanna

Senior Honors Theses

The ability to communicate securely across the internet is owing to the security of the RSA cryptosystem, among others. This cryptosystem relies on the difficulty of integer factorization to provide secure communication. Peter Shor’s quantum integer factorization algorithm threatens to upend this. A special case of the hidden subgroup problem, the algorithm provides an exponential speedup in the integer factorization problem, destroying RSA’s security. Robert McEliece’s cryptosystem has been proposed as an alternative. Based upon binary Goppa codes instead of integer factorization, his cryptosystem uses code scrambling and error introduction to hinder decrypting a message without the private key. This …


The Lie Algebra Sl2(C) And Krawtchouk Polynomials, Nkosi Alexander Jan 2023

The Lie Algebra Sl2(C) And Krawtchouk Polynomials, Nkosi Alexander

UNF Graduate Theses and Dissertations

The Lie algebra L = sl2(C) consists of the 2 × 2 complex matrices that have trace zero, together with the Lie bracket [y, z] = yz − zy. In this thesis we study a relationship between L and Krawtchouk polynomials. We consider a type of element in L said to be normalized semisimple. Let a, a^∗ be normalized semisimple elements that generate L. We show that a, a^∗ satisfy a pair of relations, called the Askey-Wilson relations. For a positive integer N, we consider an (N + 1)-dimensional irreducible L-module V consisting of the homogeneous polynomials in two variables …


Voting Rules And Properties, Zhuorong Mao Dec 2022

Voting Rules And Properties, Zhuorong Mao

Undergraduate Honors Theses

This thesis composes of two chapters. Chapter one considers the higher order of Borda Rules (Bp) and the Perron Rule (P) as extensions of the classic Borda Rule. We study the properties of those vector-valued voting rules and compare them with Simple Majority Voting (SMV). Using simulation, we found that SMV can yield different results from B1, B2, and P even when it is transitive. We also give a new condition that forces SMV to be transitive, and then quantify the frequency of transitivity when it fails.

In chapter two, we study the `protocol paradox' of approval voting. In approval …


One-Point Gleason Parts And Point Derivations In Uniform Algebras, Swarup Ghosh, Alexander J. Izzo Nov 2022

One-Point Gleason Parts And Point Derivations In Uniform Algebras, Swarup Ghosh, Alexander J. Izzo

Faculty Articles & Research

It is shown that a uniform algebra can have a nonzero bounded point derivation while having no nontrivial Gleason parts. Conversely, a uniform algebra can have a nontrivial Gleason part while having no nonzero, even possibly unbounded, point derivations.


Efficiency Of Homomorphic Encryption Schemes, Kyle Yates Aug 2022

Efficiency Of Homomorphic Encryption Schemes, Kyle Yates

All Theses

In 2009, Craig Gentry introduced the first fully homomorphic encryption scheme using bootstrapping. In the 13 years since, a large amount of research has gone into improving efficiency of homomorphic encryption schemes. This includes implementing leveled homomorphic encryption schemes for practical use, which are schemes that allow for some predetermined amount of additions and multiplications that can be performed on ciphertexts. These leveled schemes have been found to be very efficient in practice. In this thesis, we will discuss the efficiency of various homomorphic encryption schemes. In particular, we will see how to improve sizes of parameter choices in homomorphic …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


Unique Signed Minimal Wiring Diagrams And The Stanley-Reisner Correspondence, Vanessa Newsome-Slade Jun 2022

Unique Signed Minimal Wiring Diagrams And The Stanley-Reisner Correspondence, Vanessa Newsome-Slade

Master's Theses

Biological systems are commonly represented using networks consisting of interactions between various elements in the system. Reverse engineering, a method of mathematical modeling, is used to recover how the elements in the biological network are connected. These connections are encoded using wiring diagrams, which are directed graphs that describe how elements in a network affect one another. A signed wiring diagram provides additional information about the interactions between elements relating to activation and inhibition. Due to cost concerns, it is optimal to gain insight into biological networks with as few experiments and data as possible. Minimal wiring diagrams identify the …


Prime Factors: America’S Prioritization Of Literacy Over Numeracy And Its Relationship To Systemic Inequity, Troy Smith Feb 2022

Prime Factors: America’S Prioritization Of Literacy Over Numeracy And Its Relationship To Systemic Inequity, Troy Smith

Dissertations, Theses, and Capstone Projects

For much of American history, literacy has been prioritized in K-12 education and society, at large, at the expense of numeracy. This lack of numerical emphasis has established innumeracy as an American cultural norm that has resulted in America not producing a sufficient number of numerate citizens, and ranking poorly on mathematical performance in international comparisons. This paper investigates the decisions and circumstances that led to this under prioritization, along with the public and cultural impact of said actions. Toward this end, literature regarding contemporary and historical influences on American mathematics education (e.g., civic, policy, and parental) was reviewed. The …


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre Jan 2022

What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This Maple worksheet demonstrates the salient new features and functionalities of the 2022 release of the DifferentialGeometry software package.


Representation Theory And Its Applications In Physics, Jakub Bystrický Jan 2022

Representation Theory And Its Applications In Physics, Jakub Bystrický

Honors Theses

Representation theory is a branch of mathematics that allows us to represent elements of a group as elements of a general linear group of a chosen vector space by means of a homomorphism. The group elements are mapped to linear operators and we can study the group using linear algebra. This ability is especially useful in physics where much of the theories are captured by linear algebra structures. This thesis reviews key concepts in representation theory of both finite and infinite groups. In the case of finite groups we discuss equivalence, orthogonality, characters, and group algebras. We discuss the importance …


Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa Jan 2022

Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa

Honors Theses

In this paper, we analyze the decoding of cyclic codes. First, we introduce linear and cyclic codes, standard decoding processes, and some standard theorems in coding theory. Then, we will introduce Gr¨obner Bases, and describe their connection to the decoding of cyclic codes. Finally, we go in-depth into how we decode cyclic codes using the key equation, and how a breakthrough by A. Brinton Cooper on decoding BCH codes using Gr¨obner Bases gave rise to the search for a polynomial-time algorithm that could someday decode any cyclic code. We discuss the different approaches taken toward developing such an algorithm and …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Negative Representability Degree Structures Of Linear Orders With Endomorphisms, Nadimulla Kasymov, Sarvar Javliyev Jun 2021

Negative Representability Degree Structures Of Linear Orders With Endomorphisms, Nadimulla Kasymov, Sarvar Javliyev

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

The structure of partially ordered sets of degrees of negative representability of linear orders with endomorphisms is studied. For these structures, the existence of incomparable, maximum and minimum degrees, infinite chains and antichains is established,and also considered connections with the concepts of reducibility of enumerations, splittable degrees and positive representetions.


Lecture 09: Hierarchically Low Rank And Kronecker Methods, Rio Yokota Apr 2021

Lecture 09: Hierarchically Low Rank And Kronecker Methods, Rio Yokota

Mathematical Sciences Spring Lecture Series

Exploiting structures of matrices goes beyond identifying their non-zero patterns. In many cases, dense full-rank matrices have low-rank submatrices that can be exploited to construct fast approximate algorithms. In other cases, dense matrices can be decomposed into Kronecker factors that are much smaller than the original matrix. Sparsity is a consequence of the connectivity of the underlying geometry (mesh, graph, interaction list, etc.), whereas the rank-deficiency of submatrices is closely related to the distance within this underlying geometry. For high dimensional geometry encountered in data science applications, the curse of dimensionality poses a challenge for rank-structured approaches. On the other …


Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen Apr 2021

Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen

Mathematical Sciences Spring Lecture Series

The emergence of massive data sets, over the past twenty or so years, has lead to the development of Randomized Numerical Linear Algebra. Randomized matrix algorithms perform random sketching and sampling of rows or columns, in order to reduce the problem dimension or compute low-rank approximations. We review randomized algorithms for the solution of least squares/regression problems, based on row sketching from the left, or column sketching from the right. These algorithms tend to be efficient and accurate on matrices that have many more rows than columns. We present probabilistic bounds for the amount of sampling required to achieve a …


Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li Apr 2021

Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li

Mathematical Sciences Spring Lecture Series

Factorization based preconditioning algorithms, most notably incomplete LU (ILU) factorization, have been shown to be robust and applicable to wide ranges of problems. However, traditional ILU algorithms are not amenable to scalable implementation. In recent years, we have seen a lot of investigations using low-rank compression techniques to build approximate factorizations.
A key to achieving lower complexity is the use of hierarchical matrix algebra, stemming from the H-matrix research. In addition, the multilevel algorithm paradigm provides a good vehicle for a scalable implementation. The goal of this lecture is to give an overview of the various hierarchical matrix formats, such …


Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes Apr 2021

Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes Apr 2021

Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Lecture 11: The Road To Exascale And Legacy Software For Dense Linear Algebra, Jack Dongarra Apr 2021

Lecture 11: The Road To Exascale And Legacy Software For Dense Linear Algebra, Jack Dongarra

Mathematical Sciences Spring Lecture Series

In this talk, we will look at the current state of high performance computing and look at the next stage of extreme computing. With extreme computing, there will be fundamental changes in the character of floating point arithmetic and data movement. In this talk, we will look at how extreme-scale computing has caused algorithm and software developers to change their way of thinking on implementing and program-specific applications.


Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman Apr 2021

Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman

Mathematical Sciences Spring Lecture Series

Opening remarks for the 46th Annual Mathematical Sciences Spring Lecture Series at the University of Arkansas, Fayetteville.


Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang Apr 2021

Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang

Mathematical Sciences Spring Lecture Series

Algebraic multigrid (AMG) is a popular iterative solver and preconditioner for large sparse linear systems. When designed well, it is algorithmically scalable, enabling it to solve increasingly larger systems efficiently. While it consists of various highly parallel building blocks, the original method also consisted of various highly sequential components. A large amount of research has been performed over several decades to design new components that perform well on high performance computers. As a matter of fact, AMG has shown to scale well to more than a million processes. However, with single-core speeds plateauing, future increases in computing performance need to …