Open Access. Powered by Scholars. Published by Universities.®

Other Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Other Computer Sciences

Exploring Binding Pockets In The Conformational States Of The Sars-Cov-2 Spike Trimers For The Screening Of Allosteric Inhibitors Using Molecular Simulations And Ensemble-Based Ligand Docking, Grace Gupta, Gennady M. Verkhivker May 2024

Exploring Binding Pockets In The Conformational States Of The Sars-Cov-2 Spike Trimers For The Screening Of Allosteric Inhibitors Using Molecular Simulations And Ensemble-Based Ligand Docking, Grace Gupta, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and …


Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski Jun 2022

Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu Mar 2022

Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the …


Enhancing Microbiome Host Disease Prediction With Variational Autoencoders, Celeste Manughian-Peter Aug 2021

Enhancing Microbiome Host Disease Prediction With Variational Autoencoders, Celeste Manughian-Peter

Computational and Data Sciences (MS) Theses

Advancements in genetic sequencing methods for microbiomes in recent decades have permitted the collection of taxonomic and functional profiles of microbial communities, accelerating the discovery of the functional aspects of the microbiome and generating an increased interest among clinicians in applying these techniques with patients. This advancement has coincided with software and hardware improvements in the field of machine learning and deep learning. Combined, these advancements implicate further potential for progress in disease diagnosis and treatment in humans. The ability to classify a human microbiome profile into a disease category, and additionally identify the differentiating factors within the profile between …


Landscape-Based Mutational Sensitivity Cartography And Network Community Analysis Of The Sars-Cov-2 Spike Protein Structures: Quantifying Functional Effects Of The Circulating D614g Variant, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta Jun 2021

Landscape-Based Mutational Sensitivity Cartography And Network Community Analysis Of The Sars-Cov-2 Spike Protein Structures: Quantifying Functional Effects Of The Circulating D614g Variant, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

We developed and applied a computational approach to simulate functional effects of the global circulating mutation D614G of the SARS-CoV-2 spike protein. All-atom molecular dynamics simulations are combined with deep mutational scanning and analysis of the residue interaction networks to investigate conformational landscapes and energetics of the SARS-CoV-2 spike proteins in different functional states of the D614G mutant. The results of conformational dynamics and analysis of collective motions demonstrated that the D614 site plays a key regulatory role in governing functional transitions between open and closed states. Using mutational scanning and sensitivity analysis of protein residues, we identified the stability …


Computational Analysis Of Protein Stability And Allosteric Interaction Networks In Distinct Conformational Forms Of The Sars Cov 2 Spike D614g Mutant: Reconciling Functional Mechanisms Through Allosteric Model Of Spike Regulation, Gennady M. Verkhivker, Steve Agajanian, Deniz Oztas, Grace Gupta Jun 2021

Computational Analysis Of Protein Stability And Allosteric Interaction Networks In Distinct Conformational Forms Of The Sars Cov 2 Spike D614g Mutant: Reconciling Functional Mechanisms Through Allosteric Model Of Spike Regulation, Gennady M. Verkhivker, Steve Agajanian, Deniz Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike …


Using A Hybrid Agent-Based And Equation Based Model To Test School Closure Policies During A Measles Outbreak, Elizabeth Hunter, John D. Kelleher Mar 2021

Using A Hybrid Agent-Based And Equation Based Model To Test School Closure Policies During A Measles Outbreak, Elizabeth Hunter, John D. Kelleher

Articles

Background

In order to be prepared for an infectious disease outbreak it is important to know what interventions will or will not have an impact on reducing the outbreak. While some interventions might have a greater effect in mitigating an outbreak, others might only have a minor effect but all interventions will have a cost in implementation. Estimating the effectiveness of an intervention can be done using computational modelling. In particular, comparing the results of model runs with an intervention in place to control runs where no interventions were used can help to determine what interventions will have the greatest …


Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker Nov 2020

Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …


Novel Inference Methods For Generalized Linear Models Using Shrinkage Priors And Data Augmentation., Arinjita Bhattacharyya May 2020

Novel Inference Methods For Generalized Linear Models Using Shrinkage Priors And Data Augmentation., Arinjita Bhattacharyya

Electronic Theses and Dissertations

Generalized linear models have broad applications in biostatistics and sociology. In a regression setup, the main target is to find a relevant set of predictors out of a large collection of covariates. Sparsity is the assumption that only a few of these covariates in a regression setup have a meaningful correlation with an outcome variate of interest. Sparsity is incorporated by regularizing the irrelevant slopes towards zero without changing the relevant predictors and keeping the resulting inferences intact. Frequentist variable selection and sparsity are addressed by popular techniques like Lasso, Elastic Net. Bayesian penalized regression can tackle the curse of …


A Model For The Spread Of Infectious Diseases In A Region, Elizabeth Hunter, Brian Mac Namee, John D. Kelleher Apr 2020

A Model For The Spread Of Infectious Diseases In A Region, Elizabeth Hunter, Brian Mac Namee, John D. Kelleher

Articles

In understanding the dynamics of the spread of an infectious disease, it is important to understand how a town’s place in a network of towns within a region will impact how the disease spreads to that town and from that town. In this article, we take a model for the spread of an infectious disease in a single town and scale it up to simulate a region containing multiple towns. The model is validated by looking at how adding additional towns and commuters influences the outbreak in a single town. We then look at how the centrality of a town …


Optimal Multi-Stage Arrhythmia Classification Approach, Jianwei Zhang, Huimin Chu, Daniele Struppa, Jianming Zhang, Sir Magdi Yacoub, Hesham El-Askary, Anthony Chang, Louis Ehwerhemuepha, Islam Abudayyeh, Alexander Barrett, Guohua Fu, Hai Yao, Dongbo Li, Hangyuan Guo, Cyril Rakovski Feb 2020

Optimal Multi-Stage Arrhythmia Classification Approach, Jianwei Zhang, Huimin Chu, Daniele Struppa, Jianming Zhang, Sir Magdi Yacoub, Hesham El-Askary, Anthony Chang, Louis Ehwerhemuepha, Islam Abudayyeh, Alexander Barrett, Guohua Fu, Hai Yao, Dongbo Li, Hangyuan Guo, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Arrhythmia constitutes a problem with the rate or rhythm of the heartbeat, and an early diagnosis is essential for the timely inception of successful treatment. We have jointly optimized the entire multi-stage arrhythmia classification scheme based on 12-lead surface ECGs that attains the accuracy performance level of professional cardiologists. The new approach is comprised of a three-step noise reduction stage, a novel feature extraction method and an optimal classification model with finely tuned hyperparameters. We carried out an exhaustive study comparing thousands of competing classification algorithms that were trained on our proprietary, large and expertly labeled dataset consisting of 12-lead …


Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study Of Plasmodium Falciparum Hsp70s, Arnold Amusengeri, Lindy Astl, Kevin Lobb, Gennady M. Verkhivker, Özlem Tastan Bishop Nov 2019

Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study Of Plasmodium Falciparum Hsp70s, Arnold Amusengeri, Lindy Astl, Kevin Lobb, Gennady M. Verkhivker, Özlem Tastan Bishop

Mathematics, Physics, and Computer Science Faculty Articles and Research

Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric …


The Chapman Bone Algorithm: A Diagnostic Alternative For The Evaluation Of Osteoporosis, Elise Levesque, Anton Ketterer, Wajiha Memon, Cameron James, Noah Barrett, Cyril Rakovski, Frank Frisch Sep 2018

The Chapman Bone Algorithm: A Diagnostic Alternative For The Evaluation Of Osteoporosis, Elise Levesque, Anton Ketterer, Wajiha Memon, Cameron James, Noah Barrett, Cyril Rakovski, Frank Frisch

Mathematics, Physics, and Computer Science Faculty Articles and Research

Osteoporosis is the most common metabolic bone disease and goes largely undiagnosed throughout the world, due to the inaccessibility of DXA machines. Multivariate analyses of serum bone turnover markers were evaluated in 226 Orange County, California, residents with the intent to determine if serum osteocalcin and serum pyridinoline cross-links could be used to detect the onset of osteoporosis as effectively as a DXA scan. Descriptive analyses of the demographic and lab characteristics of the participants were performed through frequency, means and standard deviation estimations. We implemented logistic regression modeling to find the best classification algorithm for osteoporosis. All calculations and …


Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu Apr 2018

Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu

Electronic Thesis and Dissertation Repository

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription factor (TF) and determine its sequence specificity. Multiple algorithms were developed to derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the accurate modelling of binding behavior of dimeric TFs.

This thesis presents a novel …


A Machine Learning Approach To Diagnosis Of Parkinson’S Disease, Sumaiya F. Hashmi Jan 2013

A Machine Learning Approach To Diagnosis Of Parkinson’S Disease, Sumaiya F. Hashmi

CMC Senior Theses

I will investigate applications of machine learning algorithms to medical data, adaptations of differences in data collection, and the use of ensemble techniques.

Focusing on the binary classification problem of Parkinson’s Disease (PD) diagnosis, I will apply machine learning algorithms to a primary dataset consisting of voice recordings from healthy and PD subjects. Specifically, I will use Artificial Neural Networks, Support Vector Machines, and an Ensemble Learning algorithm to reproduce results from [MS12] and [GM09].

Next, I will adapt a secondary regression dataset of PD recordings and combine it with the primary binary classification dataset, testing various techniques to consolidate …