Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Mapping Of The Chromium And Iron Pyrazolate Landscape, Jessica Maria Lopez Oct 2018

Mapping Of The Chromium And Iron Pyrazolate Landscape, Jessica Maria Lopez

FIU Electronic Theses and Dissertations

The main objective of this project is to synthesize the first family of polynuclear chromium pyrazolate complexes. Complexity in analysis of the experimental magnetic data of multinuclear complexes arises from their (2S +1)N microstates, where S is the spin of each metal center and N is the number of metal centers. For example, high-spin (HS)-FeIII3 has 216 microstates and HS-FeIII8 ≈ 1.7x106 microstates (S= 5/2). However, complexes with chromium(III) S = 3/2 will have a noticeable reduction of microstates. Mononuclear complexes with formula [mer-CrCl3(pzH*)3] (pz*H = pyrazole, 3-Me-pzH, …


Synthesis, Structural Characterization And Catalytic Activity Of Indenyl Tris-N-Pyrrolyl Phosphine Complexes Of Ruthenium, Matthew J. Stark, Michael J. Shaw, Nigam P. Rath, Eike B. Bauer Mar 2016

Synthesis, Structural Characterization And Catalytic Activity Of Indenyl Tris-N-Pyrrolyl Phosphine Complexes Of Ruthenium, Matthew J. Stark, Michael J. Shaw, Nigam P. Rath, Eike B. Bauer

SIUE Faculty Research, Scholarship, and Creative Activity

The synthesis, characterization and catalytic activity of new ruthenium complexes of the tris-N-pyrrolyl phosphine ligand P(pyr)3 is described. The new ruthenium complexes [RuCl(ind)(PPh3){P(pyr)3}] and [RuCl(ind){P(pyr)3}2] (ind = indenyl ligand η5-C9H7−) were synthesized in 73% and 63% isolated yield, respectively, by thermal ligand exchange of [RuCl(ind)(PPh3)2] with P(pyr)3. The electronic and steric properties of the new complexes were studied through analysis of the X-Ray structures and through cyclic voltammetry. The new complexes [RuCl(ind)(PPh3){P(pyr)3}] and [RuCl(ind){P(pyr)3}2] and the known complex [RuCl(ind)(PPh3)2}] differed only slightly in their steric properties, as seen from the comparable bond lengths and angles around the ruthenium …