Open Access. Powered by Scholars. Published by Universities.®

Computational Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computational Chemistry

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Multiscale Molecular Modeling Studies Of The Dynamics And Catalytic Mechanisms Of Iron(Ii)- And Zinc(Ii)-Dependent Metalloenzymes, Sodiq O. Waheed Jan 2023

Multiscale Molecular Modeling Studies Of The Dynamics And Catalytic Mechanisms Of Iron(Ii)- And Zinc(Ii)-Dependent Metalloenzymes, Sodiq O. Waheed

Dissertations, Master's Theses and Master's Reports

Enzymes are biological systems that aid in specific biochemical reactions. They lower the reaction barrier, thus speeding up the reaction rate. A detailed knowledge of enzymes will not be achievable without computational modeling as it offers insight into atomistic details and catalytic species, which are crucial to designing enzyme-specific inhibitors and impossible to gain experimentally. This dissertation employs advanced multiscale computational approaches to study the dynamics and reaction mechanisms of non-heme Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases, including AlkB, AlkBH2, TET2, and KDM4E, involved in DNA and histone demethylation. It also focuses on Zn(II) dependent matrix metalloproteinase-1 (MMP-1), which helps …


Predicting The Reactivities And Reaction Mechanisms Of Photochemically Produced Reactive Intermediates, Benjamin Barrios Cerda Jan 2023

Predicting The Reactivities And Reaction Mechanisms Of Photochemically Produced Reactive Intermediates, Benjamin Barrios Cerda

Dissertations, Master's Theses and Master's Reports

Photochemically produced reactive intermediates (PPRIs) such as the hydroxyl radical, carbonate radical (CO3•-) singlet oxygen (1O2) and triplet state of chromophoric dissolved organic matter (3CDOM*) are formed in sunlit natural waters upon photoexcitation of chromophoric dissolved organic matter (CDOM). PPRIs react with the organic compounds involved in key environmental processes, resulting in transformation products of smaller molecular weight than their parent compounds. Photochemical transformation of these key water constituents due to their reactions with PPRIs may pose potential effects on human and aquatic ecosystems. Consequently, there is a need …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Multilevel Computational Investigation Into The Dynamics And Reaction Mechanisms Of Non-Heme Iron And 2-Oxoglutarate Dependent Enzymes, Shobhit Sanjeev Chaturvedi Jan 2022

Multilevel Computational Investigation Into The Dynamics And Reaction Mechanisms Of Non-Heme Iron And 2-Oxoglutarate Dependent Enzymes, Shobhit Sanjeev Chaturvedi

Dissertations, Master's Theses and Master's Reports

Computational chemistry methods have been extensively applied to investigate biological systems. This dissertation utilizes a multilevel computational approach to explore the dynamics and reaction mechanisms of two groups of enzymes belonging to non-heme Fe(II) and 2-oxoglutarate (2OG) dependent superfamily – histone lysine demethylases from class 7 and ethylene forming enzyme (EFE). Chapter 2 uncovers the role of conformational dynamics in the substrate selectivity of histone lysine demethylases 7A and 7B. The molecular dynamics (MD) simulations of the two enzymes revealed the importance of linker flexibility and dynamics in relative orientations of the reader (PHD) and the catalytic (JmjC) domains. Chapter …