Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

An Interval Arithmetic Newton Method For Solving Systems Of Nonlinear Equations, Ronald I. Greenberg, Eldon R. Hansen Apr 1982

An Interval Arithmetic Newton Method For Solving Systems Of Nonlinear Equations, Ronald I. Greenberg, Eldon R. Hansen

Computer Science: Faculty Publications and Other Works

We introduce an interval Newton method for bounding solutions of systems of nonlinear equations. It entails three sub-algorithms. The first is a Gauss-Seidel type step. The second is a real (non-interval) Newton iteration. The third solves the linearized equations by elimination. We explain why each sub-algorithm is desirable and how they fit together to provide solutions in as little as 1/3 to 1/4 the time required by a commonly used method due to Krawczyk.


Optimal Control Of Stochastic Integrals And Hamilton-Jacobi-Bellman Equations, Ii, Pierre-Louis Lions, José-Luis Menaldi Jan 1982

Optimal Control Of Stochastic Integrals And Hamilton-Jacobi-Bellman Equations, Ii, Pierre-Louis Lions, José-Luis Menaldi

Mathematics Faculty Research Publications

We consider the solution of a stochastic integral control problem, and we study its regularity. In particular, we characterize the optimal cost as the maximum solution of ∀vV, A(v)u ≤ ƒ(v) in D'(Ο), u = 0 on ∂Ο, uW1,∞(Ο),

where A(v) is a uniformly elliptic second order operator and V is the set of the values of the control.


Optimal Control Of Stochastic Integrals And Hamilton-Jacobi-Bellman Equations, I, Pierre-Louis Lions, José-Luis Menaldi Jan 1982

Optimal Control Of Stochastic Integrals And Hamilton-Jacobi-Bellman Equations, I, Pierre-Louis Lions, José-Luis Menaldi

Mathematics Faculty Research Publications

We consider the solution of a stochastic integral control problem and we study its regularity. In particular, we characterize the optimal cost as the maximum solution of ∀vV, A(v)u ≤ ƒ(v) in D'(Ο), u = 0 on ∂Ο, uW1,∞(Ο),

where A(v) is a uniformly elliptic second order operator and V is the set of the values of the control.