Open Access. Powered by Scholars. Published by Universities.®

Western Kentucky University

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 44 of 44

Full-Text Articles in Numerical Analysis and Computation

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …


Random Walks With Elastic And Reflective Lower Boundaries, Lucas Clay Devore Dec 2009

Random Walks With Elastic And Reflective Lower Boundaries, Lucas Clay Devore

Masters Theses & Specialist Projects

No abstract provided.


Generalized Probabilistic Bowling Distributions, Jennifer Lynn Hohn May 2009

Generalized Probabilistic Bowling Distributions, Jennifer Lynn Hohn

Masters Theses & Specialist Projects

Have you ever wondered if you are better than the average bowler? If so, there are a variety of ways to compute the average score of a bowling game, including methods that account for a bowler’s skill level. In this thesis, we discuss several different ways to generate bowling scores randomly. For each distribution, we give results for the expected value and standard deviation of each frame's score, the expected value of the game’s final score, and the correlation coefficient between the score of the first and second roll of a single frame. Furthermore, we shall generalize the results in …


Fractional Calculus: Definitions And Applications, Joseph M. Kimeu Apr 2009

Fractional Calculus: Definitions And Applications, Joseph M. Kimeu

Masters Theses & Specialist Projects

No abstract provided.


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mikhail Khenner

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Jan 2008

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

Mathematics Faculty Publications

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Jan 2008

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

Mathematics Faculty Publications

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a …


Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Jan 2008

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

Mikhail Khenner

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mikhail Khenner

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …