Open Access. Powered by Scholars. Published by Universities.®

Purdue University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 9 of 9

Full-Text Articles in Numerical Analysis and Computation

Understanding The Influence Of Perceptual Noise On Visual Flanker Effects Through Bayesian Model Fitting, Jordan Deakin, Dietmar Heinke May 2022

Understanding The Influence Of Perceptual Noise On Visual Flanker Effects Through Bayesian Model Fitting, Jordan Deakin, Dietmar Heinke

MODVIS Workshop

No abstract provided.


Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray Aug 2020

Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray

The Journal of Purdue Undergraduate Research

Neutron stars are extremely dense stellar corpses which sometimes exist in orbiting pairs known as binary neutron star (BNS) systems. The mass ratio (q) of a BNS system is defined as the mass of the heavier neutron star divided by the mass of the lighter neutron star. Over time the neutron stars will inspiral toward one another and produce a merger event. Although rare, these events can be rich sources of observational data due to their many electromagnetic emissions as well as the gravitational waves they produce. The ability to extract physical information from such observations relies heavily on numerical …


Multi-Dome Forming Of A Ti–Al–Mn Alloy, Sergey Aksenov, Aleksey Kolesnikov, Ivan Zakhariev Oct 2016

Multi-Dome Forming Of A Ti–Al–Mn Alloy, Sergey Aksenov, Aleksey Kolesnikov, Ivan Zakhariev

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of Residual Stress In Low-Temperature Colossal Carburized Layer On Austenitic Stainless Steel, Dongsong Rong, Yong Jiang, Jianming Gong, Yawei Peng Oct 2016

Numerical Simulation Of Residual Stress In Low-Temperature Colossal Carburized Layer On Austenitic Stainless Steel, Dongsong Rong, Yong Jiang, Jianming Gong, Yawei Peng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Multi-Objective Optimization Under Uncertainty Using The Hyper-Volume Expected Improvement, Martin Figura, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis Aug 2016

Multi-Objective Optimization Under Uncertainty Using The Hyper-Volume Expected Improvement, Martin Figura, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of real engineering systems requires the optimization of multiple quantities of interest. In the electric motor design, one wants to maximize the average torque and minimize the torque variation. A study has shown that these attributes vary for different geometries of the rotor teeth. However, simulations of a large number of designs cannot be performed due to their high cost. In many problems, design optimization of multi-objective functions is a very challenging task due to the difficulty to evaluate the expectation of the objectives. Current multi-objective optimization (MOO) techniques, e.g., evolutionary algorithms cannot solve such problems because they …


Design Optimization Of A Stochastic Multi-Objective Problem: Gaussian Process Regressions For Objective Surrogates, Juan Sebastian Martinez, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis Aug 2016

Design Optimization Of A Stochastic Multi-Objective Problem: Gaussian Process Regressions For Objective Surrogates, Juan Sebastian Martinez, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis

The Summer Undergraduate Research Fellowship (SURF) Symposium

Multi-objective optimization (MOO) problems arise frequently in science and engineering situations. In an optimization problem, we want to find the set of input parameters that generate the set of optimal outputs, mathematically known as the Pareto frontier (PF). Solving the MOO problem is a challenge since expensive experiments can be performed only a constrained number of times and there is a limited set of data to work with, e.g. a roll-to-roll microwave plasma chemical vapor deposition (MPCVD) reactor for manufacturing high quality graphene. State-of-the-art techniques, e.g. evolutionary algorithms; particle swarm optimization, require a large amount of observations and do not …


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Estimation Of Performance Airspeeds For High-Bypass Turbofans Equipped Transport-Category Airplanes, Nihad E. Daidzic Jun 2016

Estimation Of Performance Airspeeds For High-Bypass Turbofans Equipped Transport-Category Airplanes, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

Conventional Mach-independent subsonic drag polar does not replicate the real airplane drag characteristics exactly and especially not in the drag-divergence region due to shock-induced transonic wave drag. High-bypass turbofan thrust is a complicated function of many parameters that eludes accurate predictions for the entire operating envelope and must be experimentally verified. Fuel laws are also complicated functions of many parameters which make optimization and economic analysis difficult and uncertain in the conceptual design phase. Nevertheless, mathematical models and predictions have its important place in aircraft development, design, and optimization. In this work, airspeed-dependent turbofan thrust and the new fuel-law model …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …