Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Numerical Analysis and Computation

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier Jan 2023

Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier

Theses and Dissertations (Comprehensive)

The n-body problem models a system of n-point masses that attract each other via some binary interaction. The (n + 1)-body problem assumes that one of the masses is located at the origin of the coordinate system. For example, an (n+1)-body problem is an ideal model for Saturn, seen as the central mass, and one of its outer rings. A relative equilibrium (RE) is a special solution of the (n+1)-body problem where the non-central bodies rotate rigidly about the centre of mass. In rotating coordinates, these solutions become equilibria.

In this thesis we study dynamical aspects of planar (4 + …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez Dec 2021

Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez

Physics

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-meter telescopes which use the Imaging Atmospheric Cherenkov Technique to conduct high-energy gamma-ray astronomy. VERITAS detects magnitude and location information associated with Cherenkov light, and uses this information to indirectly observe gamma-rays through a software reconstruction process. VERITAS also records timing information corresponding to Cherenkov light detection, and this additional information could theoretically be incorporated into the reconstruction process to improve the accuracy of gamma-ray observations. The first step to including timing information is to understand when Cherenkov light detection would be expected from a known …


Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino Jun 2021

Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino

Electronic Thesis and Dissertation Repository

This thesis aims to study the magnetic and evolutionary properties of stellar objects from the prestellar phase up to and including the late protostellar phase. Many of the properties governing star formation are linked to the core’s physical properties and the magnetic field highly dictates much of the core’s stability.

The thesis begins with the implementation of a fully analytic magnetic field model used to study the magnetic properties governing the prestellar core FeSt 1-457. The model is a direct result of Maxwell’s equations and yields a central-to-surface magnetic field ratio in the equatorial plane in cylindrical coordinates. The model …


Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray Aug 2020

Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray

The Journal of Purdue Undergraduate Research

Neutron stars are extremely dense stellar corpses which sometimes exist in orbiting pairs known as binary neutron star (BNS) systems. The mass ratio (q) of a BNS system is defined as the mass of the heavier neutron star divided by the mass of the lighter neutron star. Over time the neutron stars will inspiral toward one another and produce a merger event. Although rare, these events can be rich sources of observational data due to their many electromagnetic emissions as well as the gravitational waves they produce. The ability to extract physical information from such observations relies heavily on numerical …


One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto Aug 2019

One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

Inspired by One Note Samba, a standard jazz repertoire, we present an outline of Bose-Einstein Condensate Cosmology. Although this approach seems awkward and a bit off the wall at first glance, it is not impossible to connect altogether BEC, Scalar Field Cosmology and Feshbach Resonance with Ermakov-Pinney equation. We also briefly discuss possible link with our previous paper which describes Newtonian Universe with Vortex in terms of Ermakov equation.


Finite Element Analysis Of Large Body Deformation Induced By A Catastrophic Near Impact Event, Denver W. Seely, Andrew Bowman, Heechen Cho, Mark Horstemeyer Jul 2018

Finite Element Analysis Of Large Body Deformation Induced By A Catastrophic Near Impact Event, Denver W. Seely, Andrew Bowman, Heechen Cho, Mark Horstemeyer

Proceedings of the International Conference on Creationism

Finite element simulations of near impacts of terrestrial bodies are presented to investigate possible deformation behavior induced by a massive body during the creation week and/or Genesis Flood. Using the universal law of gravitation, a gravitationally loaded objected is subjected to the ‘pull’ of a near passing fly-by object, and the resulting surface deformations are studied. An Internal State Variable (ISV) pressure dependent plasticity model for silicate rocks (Cho et al., 2018) is used to model the deformation behavior and to capture the history effects involved during the complex surface loading/unloading found in a near impact event. The model is …


Using Principle Component Analysis Of Spectral Mixtures To Analyze Tertiary And Four End-Member Mixtures Containing Carbonates And Olivine, David Burnett Jul 2018

Using Principle Component Analysis Of Spectral Mixtures To Analyze Tertiary And Four End-Member Mixtures Containing Carbonates And Olivine, David Burnett

Pence-Boyce STEM Student Scholarship

CRISM images from Mars are expected to contain carbonates such as magnesite [1]. Prior research has been successfully able to determine the approximate percent composition of phyllosilicates in binary lab mixtures using Principle Component Analysis (PCA) [2]. In order to expand this model to work on CRISM images, one of preliminary steps is allowing the algorithm to work on mixtures with more than two components.


Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory May 2017

Accuracy And Stability Of Integration Methods For Neutrino Transport In Core Collapse Supernovae, Kyle A. Gregory

Chancellor’s Honors Program Projects

No abstract provided.


Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono Jun 2016

Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono

Physics

No abstract provided.


Teaching Numerical Methods In The Context Of Galaxy Mergers, Maria Kourjanskaia May 2016

Teaching Numerical Methods In The Context Of Galaxy Mergers, Maria Kourjanskaia

Physics

Methods of teaching numerical methods to solve ordinary differential equations in the context of galaxy mergers were explored. The research published in a paper by Toomre and Toomre in 1972 describing the formation of galactic tails and bridges from close tidal interactions was adapted into a project targeting undergraduate physics students. Typically undergraduate physics students only take one Computational Physics class in which various techniques and algorithms are taught. Although it is important to study computational physics techniques, it is just as important to apply this knowledge to a problem that is representative of what computational physics researchers are investigating …


Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang Feb 2016

Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang

COBRA Preprint Series

Non-negative matrix factorization (NMF) is a widely used machine learning algorithm for dimension reduction of large-scale data. It has found successful applications in a variety of fields such as computational biology, neuroscience, natural language processing, information retrieval, image processing and speech recognition. In bioinformatics, for example, it has been used to extract patterns and profiles from genomic and text-mining data as well as in protein sequence and structure analysis. While the scientific performance of NMF is very promising in dealing with high dimensional data sets and complex data structures, its computational cost is high and sometimes could be critical for …


Factorized Runge-Kutta-Chebyshev Methods, Stephen O'Sullivan Jan 2016

Factorized Runge-Kutta-Chebyshev Methods, Stephen O'Sullivan

Conference papers

The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) class of explicit schemes for the integration of large systems of PDEs with diffusive terms is presented. FRKC2 schemes are straightforward to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures.

Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability at acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The stability domains have approximately the same extents as those of RKC schemes, and are a third longer …


Observational Signatures From Self-Gravitating Protostellar Disks, Alexander L. Desouza Aug 2014

Observational Signatures From Self-Gravitating Protostellar Disks, Alexander L. Desouza

Electronic Thesis and Dissertation Repository

Protostellar disks are the ubiquitous corollary outcome of the angular momentum conserving, gravitational collapse of molecular cloud cores into stars. Disks are an essential component of the star formation process, mediating the accretion of material onto the protostar, and for redistributing excess angular momentum during the collapse. We present a model to explain the observed correlation between mass accretion rates and stellar mass that has been inferred from observations of intermediate to upper mass T Tauri stars. We explain this correlation within the framework of gravitationally driven torques parameterized in terms of Toomre’s Q criterion. Our models reproduce both the …


Low Mach Number Fluctuating Hydrodynamics Of Diffusively Mixing Fluids, Aleksandar Donev, Andy J. Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, John B. Bell Jan 2014

Low Mach Number Fluctuating Hydrodynamics Of Diffusively Mixing Fluids, Aleksandar Donev, Andy J. Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, John B. Bell

Alejandro Garcia

We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fast isentropic fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions. We construct several explicit Runge-Kutta temporal integrators that strictly maintain the …


Simulating Exoplanet Detection Of Kepler Via Monte-Carlo Techniques, Manuel Marcano, Mario Yuuji Harper Apr 2013

Simulating Exoplanet Detection Of Kepler Via Monte-Carlo Techniques, Manuel Marcano, Mario Yuuji Harper

Mario Yuuji Harper

The Kepler mission was launched in 2009 with the intent to find earth-like planets around other star systems. Since it's launch, the number of known (and suspected) exoplanets have increased substantially from 200 to 3000. With this increase in data now available, we have chosen to model through a monte-carlo simulation, the possibility of being able to see exoplanets in a random part of the sky (using the parameters of the Kepler spacecraft). We show that there is a 0.18 to 0.01 percent chance of being able to detect exoplanets.


Block Preconditioning Of Stiff Implicit Models For Radiative Ionization In The Early Universe, Daniel R. Reynolds, Robert Harkness, Geoffrey So, Michael L. Norman Feb 2012

Block Preconditioning Of Stiff Implicit Models For Radiative Ionization In The Early Universe, Daniel R. Reynolds, Robert Harkness, Geoffrey So, Michael L. Norman

Mathematics Research

No abstract provided.