Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 1886

Full-Text Articles in Physical Sciences and Mathematics

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft Feb 2024

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft

Physics Faculty Publications

The two-photon absorption and fluorescence of bulk cadmium sulfide were studied using 50-fs, 800-nm pulses from an unamplified Ti:sapphire laser. The fluorescence spectrum was measured to have a main peak at 522 nm, and the power of the fluorescence was shown to vary quadratically with the 800-nm beam power. This supports the theory that the fluorescence is excited by two-photon absorption and confirms previous work done with longer duration, higher energy excitation pulses. Pump-probe measurements provided additional confirmation of the two-photon absorption. Measured spectral broadening of the wings of the laser spectrum also was observed, which likely is due to …


Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao Jan 2024

Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao

Physics Faculty Publications

We outline an approach to calculate the transverse-momentum-dependent distribution of linearly polarized gluons inside an unpolarized hadron on the lattice with the help of large momentum effective theory. To achieve this purpose, we propose calculating a Euclidean version of the degree of polarization for a fast-moving hadron on the lattice, which is ultraviolet finite, and no soft function subtraction is needed. It indicates a practical way to explore the distribution of the linearly polarized gluons in a proton and the linearly polarized gluon effects in hadron collisions on the lattice.


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White Jan 2024

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo Dec 2023

Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo

Physics Faculty Publications

We revisit the quantum correction to the classical time of arrival to address the unphysical instantaneous arrival in the limit of zero initial momentum. In this study, we show that the vanishing of arrival time is due to the contamination of the causality-violating component of the initial wave packet. Motivated by this observation, we propose to update the temporal collapse mechanism in Galapon (2009) [18] to incorporate the removal of causality-violating spectra of the arrival time operator. We found that the quantum correction to the classical arrival time is still observed. Thus, our analysis validates that the correction is an …


Non-Singlet Quark Helicity Pdfs Of The Nucleon From Pseudo-Distributions, Robert Edwards, Colin Egerer, Joseph Karpie, Nikhil Karthik, Christopher Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2023

Non-Singlet Quark Helicity Pdfs Of The Nucleon From Pseudo-Distributions, Robert Edwards, Colin Egerer, Joseph Karpie, Nikhil Karthik, Christopher Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

The non-singlet helicity quark parton distribution functions (PDFs) of the nucleon are determined from lattice QCD, by jointly leveraging pseudo-distributions and the distillation spatial smearing paradigm. A Lorentz decomposition of appropriately isolated space-like matrix elements reveals pseudo-distributions that contain information on the leading-twist helicity PDFs, as well as an invariant amplitude that induces an additional z2 contamination of the leading-twist signal. An analysis of the short-distance behavior of the space-like matrix elements using matching coefficients computed to next-to-leading order (NLO) exposes the desired PDF up to this additional z2 contamination. Due to the non-conservation of the axial current, …


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et Al., Gluex Collaboration Jan 2023

Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et Al., Gluex Collaboration

Physics Faculty Publications

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized 8.5 GeV photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson ρ(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of s-channel helicity conservation at small squared four-momentum transfer t and are able to extract the t dependence of natural- and unnatural-parity exchange contributions to …


Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al. Jan 2023

Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al.

Physics Faculty Publications

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.2 and 10.6 GeV incident on an unpolarized liquid-hydrogen target using the CLAS12 spectrometer at Jefferson Lab. Observed nonzero sinΔϕ modulations in ep→e'pπ+ X events, where Δϕ is the difference …


Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev Jan 2023

Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev

Physics Faculty Publications

Nb₃Sn is a next-generation superconducting material that can be used for future superconducting radiofrequency (SRF) accelerator cavities, promising better performance, cost reduction, and higher operating temperature than Nb. The Sn vapor diffusion method is currently the most preferred and successful technique to coat niobium cavities with Nb₃Sn. Among post-coating treatments to optimize the coating quality, higher temperature annealing without Sn is known to degrade Nb₃Sn because of Sn loss. We have investigated Nb₃Sn/Nb samples briefly annealed at 800-1000 °C, for 10 and 20 minutes to potentially improve the surface to enhance the performance of Nb₃Sn-coated cavities. Following the sample studies, …


Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli Jan 2023

Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli

Physics Faculty Publications

Extending the transverse momentum dependent factorization to thrust dependent observables entails a series of difficulties, ultimately associated to the behavior of soft radiation. As a consequence, the definition of the transverse momentum dependent functions has to be revised, while preserving (and possibly extending) their universality properties. Moreover, the regularization of the rapidity divergences generates non trivial correlations between rapidity and thrust. In this paper, we show how to deal with these correlations in a consistent treatment of the thrust dependence of e+eh X cross section, where the hadron transverse momentum is measured with respect to …


Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich Jan 2023

Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich

Physics Faculty Publications

Performance of superconducting resonators, particularly cavities for particle accelerators and micro cavities and thin film resonators for quantum computations and photon detectors has been improved substantially by recent materials treatments and technological advances. As a result, the niobium cavities have reached the quality factors Q ~ 1011 at 1-2 GHz and 1.5 K and the breakdown radio-frequency (rf) fields H close to the dc superheating eld of the Meissner state. These advances raise the question whether the state-of-the-art cavities are close to the fundamental limits, what these limits actually are, and to what extent the Q and H limits …


Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao Jan 2023

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao

Physics Faculty Publications

We explore the potential of jet observables in charged-current deep inelastic scattering events at the future Electron-Ion Collider. Tagging jets with a recoiling neutrino, which can be identified by the event’s missing transverse momentum, will allow for flavor-sensitive measurements of transverse momentum dependent parton distribution functions. We present the first predictions for transverse-spin asymmetries in azimuthal neutrino-jet correlations and hadron-in-jet measurements. We study the kinematic reach and the precision of these measurements and explore their feasibility using parametrized detector simulations. We conclude that jet production in charged-current deep inelastic scattering, while challenging in terms of luminosity requirements, will complement the …


Analytic Continuation Of The Relativistic Three-Particle Scattering Amplitudes, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño Jan 2023

Analytic Continuation Of The Relativistic Three-Particle Scattering Amplitudes, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño

Physics Faculty Publications

We investigate the relativistic scattering of three identical scalar bosons interacting via pair-wise interactions. Extending techniques from the nonrelativistic three-body scattering theory, we provide a detailed and general prescription for solving and analytically continuing integral equations describing the three-body reactions. We use these techniques to study a system with zero angular momenta described by a single scattering length leading to a bound state in a two-body subchannel. We obtain bound-state-particle and three-particle amplitudes in the previously unexplored kinematical regime; in particular, for real energies below elastic thresholds and complex energies in the physical and unphysical Riemann sheets. We extract positions …


Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


Modeling A Nb3Sn Cryounit In Gpt At Uitf, Sunil Pokharel, A. S. Hofler, Geoffrey A. Krafft Jan 2023

Modeling A Nb3Sn Cryounit In Gpt At Uitf, Sunil Pokharel, A. S. Hofler, Geoffrey A. Krafft

Physics Faculty Publications

Nb3Sn is a prospective material for future superconducting radio frequency (SRF) accelerator cavities. Compared to conventional niobium, the material can achieve higher quality factors, higher temperature operation, and potentially higher accelerating gradients (Eacc ≈ 96 MV/m). In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb3Sn cavities. We studied the effects of the buncher cavity and varied the gun voltage from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb3Sn five-cell cavities' energy gains with the …


Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers Jan 2023

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. Mclaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer Jan 2023

Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. Mclaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer

Physics Faculty Publications

The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal -conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb3Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. A possible use of conduction-cooled SRF linacs is for environmental applications, requiring electron beams with energy of 1-10 MeV and 1 MW of power. We have designed a 915 MHz SRF linac for such …


Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers Jan 2023

Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers

Physics Faculty Publications

Parametrizing TMD parton densities and fragmentation functions in ways that consistently match their large transverse-momentum behavior in standard collinear factorization has remained notoriously difficult. We show how the problem is solved in a recently introduced set of steps for combining perturbative and nonperturbative transverse momentum in TMD factorization. Called a “bottom-up” approach in a previous article, here we call it a “hadron structure oriented” (HSO) approach to emphasize its focus on preserving a connection to the TMD parton model interpretation. We show that the associated consistency constraints improve considerably the agreement between parametrizations of TMD functions and their large-kT behavior, …


First Clas12 Measurement Of Deeply Virtual Compton Scattering Beam-Spin Asymmetries In The Extended Valence Region, G. Christiaens, M. Defurne, D. Sokhan, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Zurek, Et Al., Clas Collaboration Jan 2023

First Clas12 Measurement Of Deeply Virtual Compton Scattering Beam-Spin Asymmetries In The Extended Valence Region, G. Christiaens, M. Defurne, D. Sokhan, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Zurek, Et Al., Clas Collaboration

Physics Faculty Publications

Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.6 GeV electron beam scattering from unpolarized protons. The results greatly extend the Q2 and Bjorken-x phase space beyond the existing data in the valence region and provide 1600 new data points measured with unprecedented statistical uncertainty, setting new, tight constraints for future phenomenological studies.


Observation Of Large Missing-Momentum (E, E' P) Cross-Section Scaling And The Onset Of Correlated-Pair Dominance In Nuclei, I. Korover, A. W. Denniston, A. Kiral, A. Schmidt, A. Lovato, N. Rocco, A. Nikolakopoulos, L. B. Weinstein, E. Piasetzky, O. Hen, M. J. Amaryan, Giovanni Angelini, H. Atac, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, Fatiha Benmokhtar, A. Bianconi, Z. W. Zhao, Et Al., Clas Collaboration Jan 2023

Observation Of Large Missing-Momentum (E, E' P) Cross-Section Scaling And The Onset Of Correlated-Pair Dominance In Nuclei, I. Korover, A. W. Denniston, A. Kiral, A. Schmidt, A. Lovato, N. Rocco, A. Nikolakopoulos, L. B. Weinstein, E. Piasetzky, O. Hen, M. J. Amaryan, Giovanni Angelini, H. Atac, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, Fatiha Benmokhtar, A. Bianconi, Z. W. Zhao, Et Al., Clas Collaboration

Physics Faculty Publications

We report the measurement of 𝒙B scaling in (e,e′p) cross-section ratios off nuclei relative to deuterium at large missing momentum of 350 ≤ Pmiss ≤ 600 MeV/c. The observed scaling extends over a kinematic range of 0.7 ≤ 𝒙B ≤ 1.8, which is significantly wider than 1.4 ≤ 𝒙B ≤ 1.8 previously observed for inclusive (e,e′) cross-section ratios. The 𝒙B-integrated cross-section ratios become constant (i.e., scale) beginning at pmiss ≈ kF, the nuclear Fermi momentum. Comparing with theoretical calculations we find good agreement with generalized contact formalism calculations for high missing …


Searching For Prompt And Long-Lived Dark Photons In Electroproduced E⁺ E⁻ Pairs With The Heavy Photon Search Experiment At Jlab, P. H. Adrian, N. A. Baltzell, M. Battaglieri, M. Bondí, S. Boyarinov, S. Bueltmann, P. Butti, V. D. Burkert, D. Calvo, T. Cao, M. Carpinelli, A. Celentano, G. Charles, L. Colaneri, W. Cooper, D. Crowe, C. Cuevas, A. D'Angelo, N. Dashyan, B. Wojtsekhowski, Et Al. Jan 2023

Searching For Prompt And Long-Lived Dark Photons In Electroproduced E⁺ E⁻ Pairs With The Heavy Photon Search Experiment At Jlab, P. H. Adrian, N. A. Baltzell, M. Battaglieri, M. Bondí, S. Boyarinov, S. Bueltmann, P. Butti, V. D. Burkert, D. Calvo, T. Cao, M. Carpinelli, A. Celentano, G. Charles, L. Colaneri, W. Cooper, D. Crowe, C. Cuevas, A. D'Angelo, N. Dashyan, B. Wojtsekhowski, Et Al.

Physics Faculty Publications

The heavy photon search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electroproduced dark photons. We report results from the 2016 engineering run consisting of 10 608  nb−1 of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the e+e invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of ε2≳10−5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background …


Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen Jan 2023

Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen

Physics Faculty Publications

We report measurements of the dc field onset Bp of magnetic flux penetration through NbTiN-AlN coating on bulk niobium using the Hall probe experimental setup. The measurements of Bp reveal the multilayer shielding effect on bulk niobium under high magnetic fields at cryogenic temperatures. We observed a significant enhancement in Bp for the NbTiN-AlN coated Nb samples as compared to bare Nb samples. The observed dependence of Bp on the coating thickness is consistent with theoretical predictions.


Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu Jan 2023

Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu

Physics Faculty Publications

Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and …


Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara Jan 2023

Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara

Physics Faculty Publications

Recent advancement in superconducting radio frequency cavity processing techniques, with diffusion of impurities within the RF penetration depth, resulted in high quality factor with increase in quality factor with increasing accelerating gradient. The increase in quality factor is the result of a decrease in the surface resistance as a result of nonmagnetic impurities doping and change in electronic density of states. The fundamental understanding of the dependence of surface resistance on frequency and surface preparation is still an active area of research. Here, we present the result of RF measurements of the TEM modes in a coaxial half-wave niobium cavity …


Concept Connectivity: An Educational And Research Framework For Scientific Learning In Optics, Photonics, And Electronic Education, Benjamin Dingel, John Gabriel C. Rivera, Francesca De Guzman Palabrica, Clint Dominic Bennett Jan 2023

Concept Connectivity: An Educational And Research Framework For Scientific Learning In Optics, Photonics, And Electronic Education, Benjamin Dingel, John Gabriel C. Rivera, Francesca De Guzman Palabrica, Clint Dominic Bennett

Physics Faculty Publications

We present a novel framework referred to as Concept Connectivity that aids in educating and engaging students by presenting the topic of the Special Theory of Relativity (STR) in a coherent and unified manner. It uses different analogue implementations of the STR coming from seemingly distinct fields of study such as (i) Optics, (ii) Photonics, and (iii) Electronics to connect not only to the concepts of the STR but to the various concepts from these different fields. In these analogue implementations, the fundamental characteristics of the different STR phenomena can be mimicked in many different ways. Concept Connectivity has two …


Microstructural Characterizations And Strength Development Of Self-Compacting Concrete Using Rice Husk Ash, Floyd Rey P. Plando, Joel T. Maquiling Jan 2023

Microstructural Characterizations And Strength Development Of Self-Compacting Concrete Using Rice Husk Ash, Floyd Rey P. Plando, Joel T. Maquiling

Physics Faculty Publications

The conversion of waste and by-products into green building materials is gaining attention for a sustainable economy. Particularly, rice husk ash (RHA) is used as a precursor in self-compacting concrete due to its high pozzolanic activity. It also minimizes the use of conventional OPC as a primary binder during construction by exploiting its chemical features and characteristics as an alternative binding agent. Developing and mass-producing RHA as a cementitious material would lessen the carbon footprint that harms the environment. This study presents the compressive strength and microstructural characterizations of rice husk ash-based self-compacting concrete (RHA-SCC). The scanning electron microscope was …


The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok Jan 2023

The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok

Physics Faculty Publications

The evolution in the post shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. Within a transitional period, the relaxation zone parameters past both, the reflected and transmitted waves, evolve differently compared to that in the incident wave. In a numerical example for the non-dissociating N2 gas heated to 5000 K/10,000 K across the interface and M = 3.5, the relaxation time for the transmitted wave is up to 50% shorter and the relaxation depth for both waves is significantly reduced, thus resulting in a weakened wave structure. The …


Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao Jan 2023

Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao

Physics Faculty Publications

We demonstrate that gluon transverse-momentum-dependent parton distribution functions (TMDPDFs) can be extracted from lattice calculations of appropriate Euclidean correlations in large-momentum effective theory (LaMET). Based on perturbative calculations of gluon unpolarized and helicity TMDPDFs, we present a matching formula connecting them and their LaMET counterparts, where the latter are renormalized in a scheme facilitating lattice calculations and converted to the MS ¯ scheme. The hard matching kernel is given up to one-loop level. We also show that the perturbative result is independent of the prescription used for the pinch-pole singularity in the relevant correlations. Our results offer a guidance for …


Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero Jan 2023

Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero

Physics Faculty Publications

The 𝛾*𝛾* → 𝜋𝜋 scattering amplitude plays a key role in a wide range of phenomena, including understanding the inner structure of scalar resonances as well as constraining the hadronic contributions to the anomalous magnetic moment of the muon. In this work, we explain how the infinite-volume Minkowski amplitude can be constrained from finite-volume Euclidean correlation functions. The relationship between the finite-volume Euclidean correlation functions and the desired amplitude holds up to energies where 3𝜋 states can go on shell, and is exact up to exponentially small corrections that scale like 𝒪(e−m𝜋L), where L is the spatial extent …


A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al. Jan 2023

A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al.

Physics Faculty Publications

A multidimensional extraction of the structure function ratio from the hard exclusive ep → e'n��+ reaction above the resonance region has been performed. The study was done based on beam-spin asymmetry measurements using a 10.6 GeV incident electron beam on a liquid-hydrogen target and the CLAS12 spectrometer at Jefferson Lab. The measurements focus on the very forward regime (t/Q2≪ 1) with a wide kinematic range of in the valence regime (0.17 < ��B < 0.55), and virtualities ranging from 1.5 GeV2 up to 6 GeV2. The results and their comparison to theoretical models based on Generalized Parton Distributions demonstrate the sensitivity to chiral-odd …