Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Physical Sciences and Mathematics

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang Jan 2022

Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang

Physics Faculty Publications

In this work, we investigated the evolution in bunch length of beams through the CEBAF injector for low to high charge per bunch. Using the General Particle Tracer (GPT), we have simulated the beams through the beamline of the CEBAF injector and analyzed the beam to get the bunch lengths at the location of chopper. We performed these simulations with the existing injector using a 130 kV gun voltage. Finally, we describe measurements to validate these simulations. The measurements have been done using chopper scanning technique for two injector laser drive frequency modes: one with 500 MHz, and another with …


Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang Jan 2022

Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang

Physics Faculty Publications

The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 µA is relatively low compared to the maximum CEBAF current of approximately 180 µA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the …


Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler Jan 2022

Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler

Physics Faculty Publications

Nb₃Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (E_{acc} 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb₃Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb₃Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show …


Eic Crab Cavity Multipole Analysis, Q. Wu, Y. Luo, B. Xiao, Subashini De Silva, J. A. Mitchell Jan 2021

Eic Crab Cavity Multipole Analysis, Q. Wu, Y. Luo, B. Xiao, Subashini De Silva, J. A. Mitchell

Physics Faculty Publications

Crab cavities are specialized RF devices designed for colliders targeting high luminosities. It is a straightforward solution to retrieve head-on collision with crossing angle existing to fast separate both beams after collision. The Electron Ion Collider (EIC) has a crossing angle of 25 mrad, and will use local crabbing to minimize the dynamic aperture requirement throughout the rings. The current crab cavity design for the EIC lacks axial symmetry. Therefore, their higher order components of the fundamental deflecting mode have a potential of affecting the long-term beam stability. We present here the multipole analysis and preliminary particle tracking results from …


Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman Jan 2021

Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman

Physics Faculty Publications

Production of high bunch charge beams for the ElectronIon Collider (EIC) is a challenging task. High bunch charge (a few nC) electron beam studies at Jefferson Lab using an inverted insulator DC high voltage photo-gun showed evidence of space charge limitations starting at 0.3 nC, limiting the maximum delivered bunch charge to 0.7 nC for beam at -225 kV, 75 ps (FWHM) pulse width, and 1.64 mm (rms) laser spot size. The low extracted charge is due to the modest longitudinal electric field (Ez) at the photocathode leading to beam loss at the anode and downstream beam pipe. To reach …


Instability Of Flux Flow And Production Of Vortex-Antivortex Pairs By Current-Driven Josephson Vortices In Layered Superconductors, Ahmad Sheikhzada, Alex Gurevich Jan 2019

Instability Of Flux Flow And Production Of Vortex-Antivortex Pairs By Current-Driven Josephson Vortices In Layered Superconductors, Ahmad Sheikhzada, Alex Gurevich

Physics Faculty Publications

We report numerical simulations of the nonlinear dynamics of Josephson vortices driven by strong dc currents in layered superconductors. Dynamic equations for interlayer phase differences in a stack of coupled superconducting layers were solved to calculate a drag coefficient η(J) of the vortex as a function of the perpendicular dc current density J. It is shown that Cherenkov radiation produced by a moving vortex causes significant radiation drag increasing η(v) at high vortex velocities v and striking instabilities of driven Josephson vortices moving faster than a terminal vc. The steady-state flux flow breaks down at ν > v …


Beam-Beam Effect: Crab Dynamics Calculation In Jleic, He Huang, Vasiliy Morozov, Yves Roblin, Amy Sy, Fanglei Lin, Yuhong Zhang, Balša Terzić, Salvador Sosa, Isurumali Neththikumara Jan 2019

Beam-Beam Effect: Crab Dynamics Calculation In Jleic, He Huang, Vasiliy Morozov, Yves Roblin, Amy Sy, Fanglei Lin, Yuhong Zhang, Balša Terzić, Salvador Sosa, Isurumali Neththikumara

Physics Faculty Publications

The electron and ion beams of a future Electron Ion Collider (EIC) must collide at an angle for detection, machine and engineering design reasons. To avoid associated luminosity reduction, a local crabbing scheme is used where each beam is crabbed before collision and de-crabbed after collision. The crab crossing scheme then provides a head-on collision for beams with a non-zero crossing angle. We develop a framework for accurate simulation of crabbing dynamics with beam-beam effects by combining symplectic particle tracking codes with a beam-beam model based on the Bassetti-Erskine analytic solution. We present simulation results using our implementation of such …


Equilibria And Synchrotron Stability In Two Energy Storage Rings, B. Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, B. Morozov, Y. Zhang Jan 2019

Equilibria And Synchrotron Stability In Two Energy Storage Rings, B. Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, B. Morozov, Y. Zhang

Physics Faculty Publications

In a dual energy storage ring, the electron beam passes through two loops at markedly different energies E_{L}, and E_{H}, i.e., energies for low energy loop and high energy loop respectively. These loops use a common beamline where a superconducting linac at first accelerates the beam from EL to EH and then decelerates the beam from EH to EL in the next pass. There are two basic solutions to the equilibrium problems possible, i.e., ’Storage Ring’ (SR) equilibrium and ’Energy Recovery Linac’ (ERL) equilibrium. SR equilibrium mode more resembles the usual single loop storage ring with strong synchrotron motion and …


Electron-Ion Collider Performance Studies With Beam Synchronization Via Gear-Change, I. Neththikumara, Geoffrey A. Krafft, Y. Roblin, Balša Terzić Jan 2019

Electron-Ion Collider Performance Studies With Beam Synchronization Via Gear-Change, I. Neththikumara, Geoffrey A. Krafft, Y. Roblin, Balša Terzić

Physics Faculty Publications

Beam synchronization of the future electron-ion collider (EIC) is studied with introducing different bunch numbers in the two colliding beams. This allows non-pairwise collisions between the bunches of the two beams and is known as "gear-change", whereby one bunch of the first beam collides with all other bunches of the second beam, one at a time. Here we report on the study of how the beam dynamics of the Jefferson Lab Electron Ion collider concept is affected by the gear change. For this study, we use the new GPU-based code (GHOST). It features symplectic one-turn maps for particle tracking and …


Simulation Study Of The Magnetized Electron Beam, S.A.K. Wijethunga, J.F. Benesch, Jean R. Delayen, F. E. Hannon, Geoffrey A. Krafft, M. A. Poelker, R. Suleiman Jan 2018

Simulation Study Of The Magnetized Electron Beam, S.A.K. Wijethunga, J.F. Benesch, Jean R. Delayen, F. E. Hannon, Geoffrey A. Krafft, M. A. Poelker, R. Suleiman

Physics Faculty Publications

Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters.


Room Temperature Measurements Of Higher Order Modes For The Sps Prototype Rf Dipole Crabbing Cavity, Subashini De Silva, P. Berrutti, Jean R. Delayen, N. A. Huque, Hyekyoung Park Jan 2018

Room Temperature Measurements Of Higher Order Modes For The Sps Prototype Rf Dipole Crabbing Cavity, Subashini De Silva, P. Berrutti, Jean R. Delayen, N. A. Huque, Hyekyoung Park

Physics Faculty Publications

LHC High Luminosity Upgrade will be developing two local crabbing systems to increase the luminosity of the colliding bunches at the ATLAS and CMS experiments. One of the crabbing systems uses the rf-dipole cavity design that will be crabbing the beam in the horizontal plane. The fully integrated crabbing cavity has two higher order mode couplers in damping those excited modes. Currently two sets of HOM couplers have been fabricated at Jefferson Lab for prototyping and testing with the LARP crabbing cavities. This paper presents the measurements of the higher order modes with the prototype HOM couplers carried out at …


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park May 2017

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly …


Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata Jan 2017

Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata

Physics Faculty Publications

Future machines such as the electron-ion colliders (JLEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations which require millions of turns. Until recently, most of the methods used linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order and colliding them …


Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata Jun 2016

Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata

Physics Faculty Publications

We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.


High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang Jan 2016

High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang

Physics Faculty Publications

Future machines such as the Electron Ion Collider (MEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations typically requiring millions of turns. Until recently, most of the methods have involved using linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order. …


High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair Jan 2015

High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair

Physics Faculty Publications

Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation and microbunching. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction fields. The speedup due to the parallel implementation on GPU/CPU platforms exceeds three orders of magnitude, thereby bringing a previously intractable problem within reach. The accuracy of the code is verified against …


Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen Jan 2015

Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen

Physics Faculty Publications

A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) …


Control Of Synchrotron Radiation Effects During Recirculation With Bunch Compression, D. R. Douglas, S. V. Benson, R. Li, Y. Roblin, C. D. Tennant, Geoffrey A. Krafft, Balŝa Terzić, C. -Y. Tsai Jan 2015

Control Of Synchrotron Radiation Effects During Recirculation With Bunch Compression, D. R. Douglas, S. V. Benson, R. Li, Y. Roblin, C. D. Tennant, Geoffrey A. Krafft, Balŝa Terzić, C. -Y. Tsai

Physics Faculty Publications

Studies of beam quality preservation during recirculation * have been extended to generate a design of a compact arc providing bunch compression with positive momentum compaction ** and control of both incoherent and coherent synchrotron radiation (ISR and CSR) effects using the optics balance methods of diMitri et al.***. In addition, the arc/compressor generates very little micro-bunching gain. We detail the beam dynamical basis for the design, discuss the design process, give an example solution, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of micro-bunching effects ****.


Cryogenic Test Of A 750 Mhz Superconducting Rf Dipole Crabbing Cavity, A. Castilla, Hyekyoung Park, J. R. Delayen Jan 2014

Cryogenic Test Of A 750 Mhz Superconducting Rf Dipole Crabbing Cavity, A. Castilla, Hyekyoung Park, J. R. Delayen

Physics Faculty Publications

A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse …


Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen Jan 2014

Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

The 500 MHz double spoke cavity has been designed for a high velocity application such as a compact electron accelerator at Center for Accelerator Science at Old Dominion University and is being built at Jefferson Lab. The geometry specific to the double spoke cavity requires a variety of tooling and fixtures. Also a number of joints are expected to make it difficult to maintain the geometric deviation from the design minimal. This paper will report the fabrication technique, resulting tolerance from the design, and comparison between the measurements and simulations.


Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen Jan 2011

Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The superconducting parallel-bar cavity [1] is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.


Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky Jan 2011

Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky

Physics Faculty Publications

A Mellin-type representation of the graviton bulk-to-bulk propagator from E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli [Nucl. Phys. B562, 330 (1999)] in terms of the integral over the product of bulk-to-boundary propagators is derived.