Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 16 of 16

Full-Text Articles in Molecular and Cellular Neuroscience

Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn Dec 2023

Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn

Doctoral Dissertations

The field of Raman spectroscopy continues to expand into biological applications due to its usefulness as a non-invasive technique that can be utilized qualitatively and quantitatively. However, the inherent weakness of Raman scattering leads to the need for each collected spectra to undergo a preprocessing step to remove noise, background drift, and cosmic rays. Biological research in particular needs large datasets due to the increased variability in samples. As datasets grow, the need to perform preprocessing on each individual spectra becomes daunting. Often, these steps are done by hand with the help of specialized software programs. Preprocessing can be accelerated …


Phenotyping Regression In A Female Mouse Model For Rett Syndrome Using Computational Neuroethology Tools, Michael J. Mykins Aug 2023

Phenotyping Regression In A Female Mouse Model For Rett Syndrome Using Computational Neuroethology Tools, Michael J. Mykins

Doctoral Dissertations

Regression is defined as loss of acquired skills over time and is a key feature of many neurodevelopmental disorders such as Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene Methyl CpG-Binding Protein 2 (MECP2) and is characterized by a period of typical development with subsequent regression of previously acquired motor and speech skills in girls. In human and animal models, it is clear syndromic phenotypes are dynamic over time but phenotyping regression over time in animal models has remained elusive. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female …


Psychedelics Can Save: The Scientific And Social Case For Rescheduling Psychedelic Compounds, Galen M. Fader May 2021

Psychedelics Can Save: The Scientific And Social Case For Rescheduling Psychedelic Compounds, Galen M. Fader

Chancellor’s Honors Program Projects

No abstract provided.


The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes May 2020

The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Alzheimer’s disease is a degenerative neurological illness characterized by the deterioration of brain regions implicated in memory and cognitive function. While researchers have yet to find a cure or effective treatment, they have gained a better understanding of its pathology and development. Through years of neuroscience research, scientists have discovered much of what happens in the brain during Alzheimer’s disease onset and how this causes its symptoms; many hypotheses regarding this aspect of the illness involve temporal lobe atrophy, neurofibrillary tangles, and amyloid plaques. Although Alzheimer’s disease affects millions of people every day, it seems that most are unaware of …


Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes Dec 2019

Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes

Chancellor’s Honors Program Projects

No abstract provided.


Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story Apr 2019

Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

The death gene grim and its pathway for apoptosis has been studied extensively in Drosophila Melanogaster. The effects of grim mutations on circadian neurodevelopment and locomotor assays have yet to be investigated. Mutations in the gene disconnected (disco) has been shown to disrupt the normal development of the circadian circuitry, specifically the small ventro-lateral neurons (s-LNv’s). Which has shown to severely decrease rhythmicity during free-running periods. Alternatively, we have observed an increase in rhythmicity during free-running periods in grim mutations. Our goal is to investigate the neurodevelopment of the circadian circuitry and their associated locomotor activities in these Drosophila mutations.


Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper Oct 2017

Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper

Haslam Scholars Projects

Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. Dominant and subordinate animals have been shown to exhibit different behavioral and physiological responses to stress, with dominants often showing stress resistance and subordinates often showing stress vulnerability. We have previously found that dominant hamsters exhibit reduced social avoidance following social defeat stress compared to subordinate hamsters, although the extent to which stress resistance in dominants generalizes to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters …


Using The Suprachiasmatic Nucleus As A Model System To Assess Tolerance And Withdrawal To Alcohol, Jonathan Houghton Lindsay Aug 2017

Using The Suprachiasmatic Nucleus As A Model System To Assess Tolerance And Withdrawal To Alcohol, Jonathan Houghton Lindsay

Doctoral Dissertations

Alcohol abuse induces many disorders including depression, metabolic syndrome, and sleep disturbances. The strong link between alcohol abuse and sleep problems, along with the close connection between sleep and circadian rhythms, led us to investigate ethanol’s effects on the circadian clock. Previous work has shown that acute ethanol blocks photic phase shifts in vivo and glutamatergic phase shifts in vitro. However, neural systems become tolerant to ethanol across different timeframes. Despite both ethanol tolerance and ethanol withdrawal syndrome being listed as criteria for developing alcohol use disorders, little is known about how ethanol tolerance and withdrawal induced hyperexcitability develop and …


The Effect Of Ethanol Consumption And Stress On Brain Derived Neurotrophic Factor And Tropomyosin Receptor Kinase B Expression., Katie Marie Masters May 2017

The Effect Of Ethanol Consumption And Stress On Brain Derived Neurotrophic Factor And Tropomyosin Receptor Kinase B Expression., Katie Marie Masters

Chancellor’s Honors Program Projects

No abstract provided.


Functional Role Of Each Component In Gamma Secretase Complex, Chen Hu May 2016

Functional Role Of Each Component In Gamma Secretase Complex, Chen Hu

Doctoral Dissertations

Amyloid hypothesis is widely accepted as the centerpiece of Alzheimer’s disease (AD) pathogenesis. It is believed that the accumulation of amyloid beta (Ab) is the major deterministic factor of AD and the most important causative factor is the ratio of Ab42/Ab40. Gamma(g)-secretase defines the length of Ab and is composed of at least four subunits: presenilins (PS1 or PS2), nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (Pen-2). They have been reported to have different roles in g-secretase. For example, PS were believed as the catalytic components in g-secretase; NCT was recognized as a substrate receptor; Pen-2 was …


Investigating Subcellular Localization Of Tpa And Pai-1 In The Mammalian Circadian Clock, Grayson T Hunley May 2015

Investigating Subcellular Localization Of Tpa And Pai-1 In The Mammalian Circadian Clock, Grayson T Hunley

Chancellor’s Honors Program Projects

No abstract provided.


Circadian Rhythmic Localization Of Tpa And Pai-1 In The Scn 2.2 Cell Culture May Provide Evidence For Determining The Mechanism Of Gating Photic Phase Shifts, Grayson T Hunley Apr 2015

Circadian Rhythmic Localization Of Tpa And Pai-1 In The Scn 2.2 Cell Culture May Provide Evidence For Determining The Mechanism Of Gating Photic Phase Shifts, Grayson T Hunley

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Mammalian circadian rhythms are controlled by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the brain. The SCN exhibits endogenous rhythms in neuronal activity and entrains to external stimuli, particularly light. Interestingly, phase shifts in response to light only occur at night and the mechanisms gating phase shifting are not well characterized. Our lab demonstrated that the extracellular protease, tissue-type plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1), help gate phase shifting. Total tPA and PAI-1 expression are rhythmic in mouse SCN. These proteins mediate different functions depending on their exact subcellular localization. Therefore, knowing where …


Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford Jun 2014

Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Multiple sclerosis (MS) is a neurodegenerative disorder caused by a prolonged immune- mediated inflammatory response that targets myelin. Nearly all of the drugs approved for the treatment of MS are general immunosuppressants or only function in symptom management. The oral medication fingolimod, however, is reported to have direct therapeutic effects on cells of the central nervous system in addition to immunomodulatory functions. Fingolimod is known to interact with sphingosine-1-phosphate (S1P) receptors, and the most widely- accepted theory for its mechanism of action is functional antagonism of the receptor. This review examines significant neuromodulatory effects achieved by functional antagonism of the …


Functional Analysis Of Corazonin And Its Receptor In Drosophila Melanogaster, Kai Sha Aug 2013

Functional Analysis Of Corazonin And Its Receptor In Drosophila Melanogaster, Kai Sha

Doctoral Dissertations

Corazonin (Crz) is an amidated undecapeptide originally isolated from the American cockroach. It has been shown to affect diverse physiological functions in a species-specific manner. However, the functionality of Crz in Drosophila melanogaster has not yet been determined. To gain insight into the role of Crz signaling in vivo, Crz and CrzR null alleles were obtained by transposable element mobilization. Flies carrying a deficiency uncovering Crz and pr-set7 loci were generated via P-element excision, and the latter was rescued by wild-type pr-set7 transgene. A mutation of Crz receptor (CrzR) was generated by Minos-element mobilization from …


Fibrinolytic Proteins And Brain-Derived Neurotrophic Factor Modulation Of Suprachiasmatic Nucleus Circadian Clock, Xiang Mou Aug 2010

Fibrinolytic Proteins And Brain-Derived Neurotrophic Factor Modulation Of Suprachiasmatic Nucleus Circadian Clock, Xiang Mou

Doctoral Dissertations

Mammalian circadian rhythms are controlled by a clock located in the suprachiasmatic nucleus (SCN). The mechanisms through which light phase-shifts the SCN circadian clock are similar to those underlying memory formation and long-term potentiation (LTP). Several secreted proteins, including tissue-type plasminogen activator (tPA), plasminogen, and brain-derived neurotrophic factor (BDNF), have been implicated in this process. These same proteins are important for photic phase-shifts of the SCN circadian clock. Early night glutamate application to SCN containing brain slices resets the circadian clock. Our experiments find that the endogenous tPA inhibitor, plasminogen activator inhibitor 1(PAI-1), blocked these shifts in slices from wildtype …


Intrinsic Role Of Polysialylated Neural Cell Adhesion Molecule In Photic Phase Resetting Of The Mammalian Circadian Clock, Rebecca Prosser Jan 2003

Intrinsic Role Of Polysialylated Neural Cell Adhesion Molecule In Photic Phase Resetting Of The Mammalian Circadian Clock, Rebecca Prosser

Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology

The suprachiasmatic nuclei (SCN), the location of the mammalian circadian clock, are one of the few adult brain regions that express the highly polysialylated form of neural cell adhesion molecule (PSA-NCAM). A role for the polysialic acid (PSA) component of PSA-NCAM, which is known to promote tissue plasticity, has been reported for photic entrainment of circadian rhythmicity in vivo. The in vivo results, however, do not discriminate between PSA acting upstream or downstream of the glutamatergic synapses that convey photic information to the SCN. To address this key issue, we exploited an in vitro rat brain slice preparation that retains …