Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Amherst

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 23 of 23

Full-Text Articles in Molecular and Cellular Neuroscience

Noradrenergic Regulation Of Decision-Making In Female And Male Rats, Emma S. Dauster Aug 2023

Noradrenergic Regulation Of Decision-Making In Female And Male Rats, Emma S. Dauster

Doctoral Dissertations

Decision-making is regulated by many associated brain regions, including the locus coeruleus (LC) and the prefrontal cortex (PFC). Disruptions in decision-making are a key feature of many disorders including attention-deficit/hyperactivity disorder which is disproportionately diagnosed in one sex over another for reasons unknown. LC or its primary neurotransmitter norepinephrine (NE) have been implicated in the etiology or treatment of disrupted decision-making. Understanding the relationship among LC, PFC, and decision-making across sexes may provide insight into the basic neurobiology of cognition and disorders that lead to disrupted decision making. There are sex differences in LC anatomy, however studies investigating sex differences …


Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic Feb 2023

Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic

Doctoral Dissertations

Learning and memory formation at the cellular level involves decoding complex electrochemical signals between nerve cells, or neurons. Understanding these processes at the molecular level requires a comprehensive study of calcium-sensitive proteins that serve as signal mediators within cells. More specifically, the protein calcium/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of downstream cellular signaling events in the brain, playing an important role in long term memory formation. CaMKII is encoded in humans on four different genes: alpha, beta, gamma and delta. For added complexity, each of these gene products can be alternatively spliced and translated into multiple protein …


Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins Oct 2022

Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins

Masters Theses

Chemosensation is achieved through the binding of chemical signals to chemoreceptor proteins embedded in the membranes of sensory neurons. The molecular identity of these receptors, as well as the downstream processing of chemosensory signals, has been well studied in arthropods and vertebrates. However, very little is known about molluscan chemosensation. The identity of chemoreceptor proteins in the nudibranch mollusc Berghia stephanieae are unknown. Data from other protostome and molluscan studies suggest Berghia may use ionotropic receptors for some forms of chemoreception. This study used a bioinformatics approach to identify potential chemosensory ionotropic receptors in the transcriptome of Berghia. A …


The Neurobiological Underpinnings Of Depression-Related Maternal Behavior Deficits, Sarah B. Winokur Feb 2022

The Neurobiological Underpinnings Of Depression-Related Maternal Behavior Deficits, Sarah B. Winokur

Doctoral Dissertations

Maternal caregiving is a dynamic process that requires extensive cognitive, motivational, and affective processing. World-wide, approximately 17% of mothers are diagnosed with postpartum depression yearly (Wang et al., 2021). Untreated, mothers with postpartum depression experience deficits in cognition, motivation, affect, and parenting (Arteche et al., 2011; Dix and Meunier, 2009; Lovejoy et al., 2000). Although postpartum depression is related to compromised parenting, to date, few studies have examined the neurobiological mechanisms by which maternal behavior is compromised in postpartum depression (Field, 2010; Murray et al., 1996). This dissertation aims to examine how depression neurobiologically disrupts parenting abilities. These studies …


Sensory Representation Of Social Stimuli In Aromatase Expressing Neurons In The Medial Amygdala, Charles J. Gualtieri May 2021

Sensory Representation Of Social Stimuli In Aromatase Expressing Neurons In The Medial Amygdala, Charles J. Gualtieri

Masters Theses

The ability of animals to sense, interpret, and respond appropriately to social stimuli in their environment is essential for identifying and distinguishing between members of their own species. In mammals, social interactions both within and across species play a key role in determining if an animal will live to pass on its genes to the next generation or else be removed from the gene pool. The result of this selection pressure can be observed in specialized neural circuits that respond to social stimuli and orchestrate appropriate behavioral responses. This highly conserved network of brain structures is often referred to as …


Effects Of A Circadian Mutation On Adult Neurogenesis, Michael Bahiru Feb 2021

Effects Of A Circadian Mutation On Adult Neurogenesis, Michael Bahiru

Masters Theses

Rotating shift work, irregular sleep patterns and jetlag disrupt circadian rhythms, induce or aggravate disease, and produce deficits in cognitive function. Internal misalignment, a state in which abnormal phase relationships prevail between and within organs, is widely proposed to account for these adverse effects of circadian disruption. This hypothesis has been difficult to test because phase shifts of the entraining environmental cycle lead to transient desynchrony. Thus, it remains possible that phase shifts, regardless of internal desynchrony, account for adverse effects of circadian disruption. I have used the duper mutant hamster, whose locomotor activity rhythms re-entrain 5-fold faster than wild …


Studies On High-Throughput Single-Neuron Rna Sequencing And Circadian Rhythms In The Nudibranch, Berghia Stephanieae, Thi Bui Feb 2021

Studies On High-Throughput Single-Neuron Rna Sequencing And Circadian Rhythms In The Nudibranch, Berghia Stephanieae, Thi Bui

Masters Theses

One of the goals of neuroscience is to classify all of the neurons in the brain. Neuronal types can be defined using a combination of morphology, electrophysiology, and gene expression profiles. Gene expression profiles allow differentiation between cells that share similar characteristics. Leveraging the advantage of Berghia stephanieae (Gastropoda; Nudibranchia), which has around 28,000 neurons, I constructed high-throughput single-neuron transcriptomes for its whole brain. I produced a single-cell dissociation protocol and a custom data analysis pipeline for data of this nature. Around 129,000 cells were collected from 18 rhinophore ganglia and 20 circumesophageal ring ganglia (brain), consisting of the cerebropleural, …


How Do Adult Songbirds Learn New Sounds? Using Neuromodulators To Probe The Function Of The Auditory Association Cortex, Matheus Macedo-Lima Jul 2020

How Do Adult Songbirds Learn New Sounds? Using Neuromodulators To Probe The Function Of The Auditory Association Cortex, Matheus Macedo-Lima

Doctoral Dissertations

The ability to associate sounds and outcomes is vital in the life history of many species. Animals constantly assess the soundscape for cues associated with threats, competitors, allies, mates or prey, and experience is crucial for those associations. For vocal learning species such as humans and songbirds, learning sounds (i.e. perception and association learning) is also the first step in the process of vocal learning. Auditory learning is thought to depend on high-order cortical brain structures, where sounds and meaning are bound. In songbirds, the caudomedial nidopallium (NCM) is part of the auditory association cortex and is known to be …


Sex Specific Electrophysiology Of Aromatase Neurons In The Medial Amygdala, Marcelo Henrique Correia Oct 2019

Sex Specific Electrophysiology Of Aromatase Neurons In The Medial Amygdala, Marcelo Henrique Correia

Masters Theses

The medial amygdala (MeA) is a central node in the interwoven circuits that regulate social behavior based on pheromones. Aromatase-expressing (arom+) neurons in the MeA are key for the establishment and maintenance of sex differences. Here, we characterized the intrinsic electrophysiological properties of arom+ neurons and non-aromatase (arom-) neurons in the MeA of male and female mice. Most electrophysiological properties were similar for arom+ neurons in the MeA between sexes, but the relative refractory period was twice as large in female mice. We also show that the firing pattern and firing frequency is markedly …


Mapping A Pup-Responsive Pathway From The Medial Preoptic Area To The Ventral Tegmental Area., Matias Andina Oct 2018

Mapping A Pup-Responsive Pathway From The Medial Preoptic Area To The Ventral Tegmental Area., Matias Andina

Masters Theses

Maternal behavior is the complex array of caregiving behaviors females display towards offspring. In rats, the transition to motherhood depends on the action of various hormones, especially estradiol near parturition, which primes the maternal circuitry to respond to pups upon first encounter at parturition with appropriate maternal behavior. Although virgin rats avoid pups, new mothers are highly motivated to interact with pups, and their maternal behavior depends on the functional interaction between the medial preoptic area (mPOA) and the ventral tegmental area (VTA). However, a precise mapping of the VTA-projecting mPOA neurons remains to be elucidated. To determine whether pup-responsive …


Effort-Related Motivational Dysfunctions: Behavioral And Neurochemical Studies Of The Wistar-Kyoto Rat Model Of Depression, Brendan Abbott Jul 2018

Effort-Related Motivational Dysfunctions: Behavioral And Neurochemical Studies Of The Wistar-Kyoto Rat Model Of Depression, Brendan Abbott

Masters Theses

Depression and related disorders are characterized by motivational dysfunctions, including deficits in behavioral activation and exertion of effort. Animal models of relevance to depression represent a critical starting point in elucidating the neurobiological mechanisms underlying motivational dysfunctions. The present study explored the use of the Wistar-Kyoto (WKY) animal model of depression to examine effort-related functions as measured by voluntary wheel running and performance on a mixed fixed ratio 5/progressive ratio (FR5/PR) operant task. Given the known link between activational aspects of motivation and the mesocorticolimbic dopamine (DA) system, the behavioral effects of d-amphetamine (0.5 and 1.0 mg/kg, IP), a psychostimulant …


Sex Differences In Estradiol Signaling In The Zebra Finch (Taeniopygia Gutatta) Auditory Cortex, Amanda Krentzel Nov 2017

Sex Differences In Estradiol Signaling In The Zebra Finch (Taeniopygia Gutatta) Auditory Cortex, Amanda Krentzel

Doctoral Dissertations

Although several sex differences have been described in brain structure, function, and development, sex as a biological factor is underrepresented in neuroscience studies. In the mammalian brain, there are sex differences in the mechanism of rapid estradiol actions on neuronal physiology. In the songbird, the brain is a major source of estradiol production, and estradiol rapidly modulates auditory responsiveness through dynamic changes and an unknown receptor mechanism. I set out to determine if there are sex differences in rapid estradiol modulation of auditory cortical activity, as has been shown in other systems. I tested this hypothesis through three aims: 1) …


The Cellular Context Of Estradiol Regulation In The Zebra Finch Auditory Forebrain, Maaya Ikeda Nov 2016

The Cellular Context Of Estradiol Regulation In The Zebra Finch Auditory Forebrain, Maaya Ikeda

Doctoral Dissertations

Estradiol, traditionally known as a hormone that communicates with distant cells in the body, is also synthesized locally in the brain to act as a neuromodulator. Neuromodulators differ from neurotransmitters in that they simultaneously affect a population of neurons and their actions are not limited to the synapse. One of the many effects of estradiol signaling is rapid modulation of auditory processing in response to external stimuli. The enzyme required for estradiol synthesis, aromatase, is highly expressed in the regions that are involved in higher-order processing of sounds in humans and songbirds. Since zebra finches, a type of songbird, are …


Evaluating A Novel Photochemical Tool For Labeling And Tracking Live, Endogenous Calcium-Permeable Ampars, Rosamund Elizabeth Combs-Bachmann Jul 2016

Evaluating A Novel Photochemical Tool For Labeling And Tracking Live, Endogenous Calcium-Permeable Ampars, Rosamund Elizabeth Combs-Bachmann

Masters Theses

The purpose of this research is to advance development of a photochemical tool designed to probe the role of ionotropic glutamate receptor signaling in neurodegenerative processes, and to delve more deeply into the biological processes underlying the role of these receptors in signaling and memory formation. This ligand-targeted nanoprobe was designed and developed in our lab to label endogenous calcium-permeable AMPARs (CP-AMPARs) in live cells with minimal disruption to native receptor activity. Nanoprobe is designed to use naphthyl acetyl spermine (NASPM) as a photocleavable ligand to target and covalently label native CP-AMPARs with a non-perturbing, fluorescent marker that then allows …


Behavioral, Neurobiological, And Genetic Analysis Of The Circadian Mutant Duper, Emily Nicole Corbett Manoogian Nov 2015

Behavioral, Neurobiological, And Genetic Analysis Of The Circadian Mutant Duper, Emily Nicole Corbett Manoogian

Doctoral Dissertations

The recently discovered circadian mutant hamster duper has a short period of ~23 hours and exhibits exaggerated phase shifts in response to a 15-min light pulse. To increase the understanding of the duper mutation, I performed behavioral, neurobiological, and genetic experiments. Behavioral studies using photic and non-photic stimuli found that large phase shifts exhibited by duper hamsters are specific to photic cues, but not to phase. Additionally, 2/3 of duper hamsters, but no WTs, displayed transient ultradian wheel-running patterns when transferred from light to dark at CT 18. This suggests that the mutation may weaken coupling among components of the …


Chemical Biology-Based Probes For The Labeling Of Targets On Live Cells, Amanda M. Hussey Nov 2015

Chemical Biology-Based Probes For The Labeling Of Targets On Live Cells, Amanda M. Hussey

Doctoral Dissertations

Proper detection is the key to studying any processes on the cellular scale. Nowhere is this more evident than in the tight space which confines the synaptic cleft. Being able to ascertain the location of receptors on live neurons is fundamental to our understanding of not only how these receptors interact and move inside the cell but also how neurons function. Most detection methods rely on significantly altering the receptor; both tagging with a fluorescent protein or targeting the receptor by a fluorescent reporter in the form of a small molecule causes significant difficulties. These localization techniques often result in …


Novel Strategies To Modulate Synaptic Communication And Investigate The Role Of Hdac6 In Alzheimer’S Disease, Kathryne A. Medeiros Aug 2014

Novel Strategies To Modulate Synaptic Communication And Investigate The Role Of Hdac6 In Alzheimer’S Disease, Kathryne A. Medeiros

Doctoral Dissertations

Neuronal communication is mediated by chemical signaling at the synapse. The underlying molecular mechanisms of learning and memory are poorly understood. Very few tools are available to study how memories are formed in the mammalian brain. This dissertation focuses on developing novel strategies to study neural activity. Here we develop and use a chemical-genetic approach to enable target-specific photocontrol of inhibitory synaptic neurotransmission of GABAA receptor subtypes. The tools developed here selectively photocontrolled GABAA receptor subtypes. This enabled the investigation of the functional role these receptor subtypes have in inhibitory synaptic neurotransmission. This dissertation also focuses on identifying …


The Role Of Er-Alpha And The Ovaries In The Enduring Altered Behavioral Response To Pubertal Immune Stress, Bethany Rappleyea Jan 2014

The Role Of Er-Alpha And The Ovaries In The Enduring Altered Behavioral Response To Pubertal Immune Stress, Bethany Rappleyea

Masters Theses 1911 - February 2014

Peripubertal immune stress alters adult responsiveness to estradiol (E2) and progesterone (P). When female mice are injected with the bacterial endotoxin lipopolysaccharide (LPS) at six weeks of age, or during pubertal development, they display a decrease in response to ovarian hormones. In contrast, females ovariectomized prior to peripubertal immune stress display typical levels of sexual behavior following sequential injections of E2 and P in adulthood. Additionally, intact females exposed to peripubertal immune stress display a decrease in estrogen receptor alpha (ER-α)-immunoreactive (ir) cells in the medial preoptic area (MPOA) and ventromedial nucleus of the hypothalamus (VMH) in …


Notch Regulation Of Adam12 Expression In Glioblastoma Multiforme, Ala'a S. Alsyaideh Jan 2012

Notch Regulation Of Adam12 Expression In Glioblastoma Multiforme, Ala'a S. Alsyaideh

Masters Theses 1911 - February 2014

Glioblastoma is the most common malignant brain tumor, accounting for 17% of all primary brain tumors in the United States. Despite the available surgical, radiation, and chemical therapeutic options, the invasive and infiltrative nature of the tumor render current treatment options minimally effective. Recent reports have identified multiple regulators of glioblastoma progression and invasiveness. It has been demonstrated that ADAM12, A Disintegrin And Metalloproteinase encoded by ADAM12 gene, is over-expressed in glioblastoma and directly correlated with tumor proliferation. Additionally, dysregulation of the Notch signaling pathway has been implicated in the pathogenesis of many gliomas. Lastly, an evolving role of microRNAs, …


Novel Progestin Signaling Molecules In The Brain: Distribution, Regulation And Molecular Mechanism Of Action, Karlie A. Intlekofer May 2011

Novel Progestin Signaling Molecules In The Brain: Distribution, Regulation And Molecular Mechanism Of Action, Karlie A. Intlekofer

Open Access Dissertations

Progesterone regulates female reproduction in many ways, yet it is still unclear how signals are conveyed through nuclear and extranuclear receptors. The traditional notion was that progesterone binds classical progesterone receptors to alter gene transcription. This view has been challenged by the discovery of additional progesterone signaling molecules important for progesterone actions in non-neural cells. In granulosa cells, the progesterone receptor membrane component 1 (Pgrmc1) mediates progesterone effects by forming a receptor complex with binding partner, Serpine mRNA binding protein 1, but it is unknown whether these molecules function similarly in the brain. To begin to address these issues, I …


Sex Difference In Calbindin Cell Number In The Mouse Preoptic Area: Effects Of Neonatal Estradiol And Bax Gene Deletion, Richard F. Gilmore Iii Jan 2011

Sex Difference In Calbindin Cell Number In The Mouse Preoptic Area: Effects Of Neonatal Estradiol And Bax Gene Deletion, Richard F. Gilmore Iii

Masters Theses 1911 - February 2014

The sexually dimorphic nucleus of the preoptic area (SDN-POA) was first discovered in rats and is one of the most famous and best studied sex differences in the field of neuroscience. Though well documented in rats (larger in males than females), this sex difference was only recently able to be observed in mice due to the discovery of the protein calbindin-D28k as a marker. Recent studies have shown a larger, more distinct calbindin-immunoreactive (ir) cell cluster in male mice compared to females. However, the exact location of the cluster and whether the sex difference is one of total cell number …


Dopamine Controls Locomotion By Modulating The Activity Of The Cholinergic Motor Neurons In C. Elegans, Andrew T. Allen Jan 2009

Dopamine Controls Locomotion By Modulating The Activity Of The Cholinergic Motor Neurons In C. Elegans, Andrew T. Allen

Masters Theses 1911 - February 2014

Dopamine is an important neurotransmitter in the brain, where it plays a regulatory role in the coordination of movement and cognition by acting through two classes of G protein-coupled receptors to modulate synaptic activity. In addition, it has been shown these two receptor classes can exhibit synergistic or antagonistic effects on neurotransmission. However, while the pharmacology of the mammalian dopamine receptors have been characterized in some detail, less is known about the molecular pathways that act downstream of the receptors. As in mammals, the soil nematode Caenorhabditis elegans uses two classes of dopamine receptors to control neural activity and thus …


A New Laser Pointer Driven Optical Microheater For Precise Local Heat Shock, Mike Placinta Jan 2009

A New Laser Pointer Driven Optical Microheater For Precise Local Heat Shock, Mike Placinta

Masters Theses 1911 - February 2014

The zebrafish has emerged as an important genetic model system for the study of vertebrate development. However, while genetics is a powerful tool for the study of early gene functions, the approach is more limited when it comes to understanding later functions of genes that have essential roles in early embryogenesis. There is thus a need to manipulate gene expression at different times, and ideally only in some regions of the developing embryo. Methods for conditional gene regulation have been established in Drosophila, C.elegans and the mouse, utilizing conditional gene activation systems such as the Gal4-UAS system (fly) and the …