Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

A Comparison Of Pm-Nato3’S Influence On Neural Progenitors And Mature Dopamine Neurons, Mary E. West Aug 2023

A Comparison Of Pm-Nato3’S Influence On Neural Progenitors And Mature Dopamine Neurons, Mary E. West

Masters Theses

This thesis presents significant findings regarding the role of PM-Nato3 in its interaction with developing neurons in the context of Parkinson's disease (PD) and regenerative medicine. We investigated the effects of PM-Nato3 on dopamine (DA) neurogenesis under different culture conditions, both in vitro and in vivo. In the standard dopaminergic culture condition, PM-Nato3 potentially increased the speed of DA neuron production but did not significantly increase the yield of DA neurons. In a minimal culture condition, there was no notable difference between the control and PM-Nato3 conditions, suggesting minimal impact on DA neurogenesis. In vivo studies using a mouse model …


Morphological Characterization Of Two Transgenic Strategies For Genetic Access To Semilunar Granule Neurons In The Mouse Dentate Gyrus, David T. Rexford Apr 2023

Morphological Characterization Of Two Transgenic Strategies For Genetic Access To Semilunar Granule Neurons In The Mouse Dentate Gyrus, David T. Rexford

Masters Theses

Granule cells (GCs) of the dentate gyrus (DG) have been understood as a homogeneous class of neurons exhibiting a characteristic limited firing pattern. A subtype of GC called a semilunar granule cell (SGC) has been identified exhibiting variant morphology, electrophysiology, and positioning from normal GCs. SGCs represent an emerging novel subpopulation of GCs, however, there is presently no genetic tool to access SGCs separately from normal GCs. To provide access for future in vivo studies of this population, we examined two genetic strategies for putative SGC specificity in mouse brain slices. Morphological analysis was performed for quantitative identification of putative …


Role Of The Fractalkine Receptor In Cns Autoimmune Inflammation: New Approach Utilizing A Mouse Model Expressing The Human Cx3cr1I249/M280 Variant, Sandra M. Cardona, Sangwon V. Kim, Kaira A. Church, Vanessa O. Torres, Ian A. Cleary, Andrew S. Mendiola, Stephen P. Saville, Stephanie S. Watowich, Jan Parker-Thornburg, Alejandro Soto-Ospina, Richard M. Ransohoff, Astrid E. Cardona Oct 2018

Role Of The Fractalkine Receptor In Cns Autoimmune Inflammation: New Approach Utilizing A Mouse Model Expressing The Human Cx3cr1I249/M280 Variant, Sandra M. Cardona, Sangwon V. Kim, Kaira A. Church, Vanessa O. Torres, Ian A. Cleary, Andrew S. Mendiola, Stephen P. Saville, Stephanie S. Watowich, Jan Parker-Thornburg, Alejandro Soto-Ospina, Richard M. Ransohoff, Astrid E. Cardona

Peer Reviewed Articles

Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During …