Open Access. Powered by Scholars. Published by Universities.®

Virology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Virology

Crimean-Congo Hemorrhagic Fever: A Tick-Borne Killer, Deisy Reyes Andrade, Sofia Dodge, Basheer Alam Apr 2023

Crimean-Congo Hemorrhagic Fever: A Tick-Borne Killer, Deisy Reyes Andrade, Sofia Dodge, Basheer Alam

Research and Scholarship Symposium Posters

Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne virus. It was first identified in Crimea in 1944 and was later detected in Congo in 1969. It is endemic where it is mainly located in regions such as Africa, Europe, and Asia. CCHF is primarily transmitted through the bite of an infected tick, however direct contact with bodily fluids can also be another route of transmission. Specifically, Hyalomma ticks are the main reservoirs and vectors of CCHF. Symptoms may range from asymptomatic to severe development of hemorrhage, with a fatality rate of up to 40%. Initial symptoms include headaches, high fevers, body …


Tat Controls Transcriptional Persistence Of Unintegrated Hiv Genome In Primary Human Macrophages., Beatrix Meltzer, Deemah Dabbagh, Jia Guo, Fatah Kashanchi, Mudit Tyagi, Yuntao Wu May 2018

Tat Controls Transcriptional Persistence Of Unintegrated Hiv Genome In Primary Human Macrophages., Beatrix Meltzer, Deemah Dabbagh, Jia Guo, Fatah Kashanchi, Mudit Tyagi, Yuntao Wu

Medicine Faculty Publications

In HIV infected macrophages, a large population of viral genomes persists as the unintegrated form (uDNA) that is transcriptionally active. However, how this transcriptional activity is controlled remains unclear. In this report, we investigated whether Tat, the viral transactivator of transcription, is involved in uDNA transcription. We demonstrate that de novo Tat activity is generated from uDNA, and this uDNA-derived Tat (uTat) transactivates the uDNA LTR. In addition, uTat is required for the transcriptional persistence of uDNA that is assembled into repressive episomal minichromatin. In the absence of uTat, uDNA minichromatin is gradually silenced, but remains highly inducible by HDAC …


Human Metapneumovirus Induces Formation Of Inclusion Bodies For Efficient Genome Replication And Transcription, Nicolás P. Cifuentes-Muñoz, Jean Branttie, Kerri Beth Slaughter, Rebecca Ellis Dutch Dec 2017

Human Metapneumovirus Induces Formation Of Inclusion Bodies For Efficient Genome Replication And Transcription, Nicolás P. Cifuentes-Muñoz, Jean Branttie, Kerri Beth Slaughter, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA …


Intrinsic And Innate Defenses Of Neurons: Détente With The Herpesviruses, Lynn Enquist, David A. Leib Oct 2017

Intrinsic And Innate Defenses Of Neurons: Détente With The Herpesviruses, Lynn Enquist, David A. Leib

Dartmouth Scholarship

Neuroinvasive herpesviruses have evolved to efficiently infect and establish latency in neurons. The nervous system has limited capability to regenerate, so immune responses therein are carefully regulated to be nondestructive, with dependence on atypical intrinsic and innate defenses. In this article we review studies of some of these noncanonical defense pathways and how herpesvirus gene products counter them, highlighting the contributions that primary neuronal in vitro models have made to our understanding of this field.


Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt Jul 2017

Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt

Molecular and Cellular Biochemistry Faculty Publications

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking …


Equine Arteritis Virus Uses Equine Cxcl16 As An Entry Receptor, Sanjay Sarkar, Lakshman Chelvarajan, Yun Young Go, Frank Cook, Sergey Artiushin, Shankar Mondal, Kelsi Anderson, John E. Eberth, Peter J. Timoney, Theodore S. Kalbfleisch, Ernest F. Bailey, Udeni B. R. Balasuriya Apr 2016

Equine Arteritis Virus Uses Equine Cxcl16 As An Entry Receptor, Sanjay Sarkar, Lakshman Chelvarajan, Yun Young Go, Frank Cook, Sergey Artiushin, Shankar Mondal, Kelsi Anderson, John E. Eberth, Peter J. Timoney, Theodore S. Kalbfleisch, Ernest F. Bailey, Udeni B. R. Balasuriya

Veterinary Science Faculty Publications

Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from < 3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated …


A Computational Analysis Of The Structural Determinants Of Apobec3'S Catalytic Activity And Vulnerability To Hiv-1 Vif, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer Jun 2015

A Computational Analysis Of The Structural Determinants Of Apobec3'S Catalytic Activity And Vulnerability To Hiv-1 Vif, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer

Celia A. Schiffer

APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively …


True Durability: Hiv Virologic Suppression In An Urban Clinic And Implications For Timing Of Intensive Adherence Efforts And Viral Load Monitoring., Debra A Benator, Angelo Elmi, Manuel D Rodriguez, Howard B Gale, Virginia L. Kan, Heather J. Hoffman, Susan Tramazzo, Karen Hall, Angela Mcknight, Leah Squires Apr 2015

True Durability: Hiv Virologic Suppression In An Urban Clinic And Implications For Timing Of Intensive Adherence Efforts And Viral Load Monitoring., Debra A Benator, Angelo Elmi, Manuel D Rodriguez, Howard B Gale, Virginia L. Kan, Heather J. Hoffman, Susan Tramazzo, Karen Hall, Angela Mcknight, Leah Squires

Medicine Faculty Publications

Although the majority of HIV-infected patients who begin potent antiretroviral therapy should expect long-term virologic suppression, the realities in practice are less certain. Durability of viral suppression was examined to define the best timing of targeted adherence strategies and intensive viral load monitoring in an urban clinic population with multiple challenges to ART adherence. We examined the risk of viral rebound for patients who achieved two consecutive viral loads lower than the lower limit of quantification (LLOQ) within 390 days. For 791 patients with two viral loads below the LLOQ, viral rebound >LLOQ from the first viral load was 36.9 …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Mcl1 Enhances The Survival Of Cd8+ Memory T Cells After Viral Infection, Jingang Gui, Zhuting Hu, Ching-Yi Tsai, Tian Ma, Yan Song, Amanda Morales, Li-Hao Huang, Ethan Dmitrovsky, Ruth Craig, Edward Usherwood Jan 2015

Mcl1 Enhances The Survival Of Cd8+ Memory T Cells After Viral Infection, Jingang Gui, Zhuting Hu, Ching-Yi Tsai, Tian Ma, Yan Song, Amanda Morales, Li-Hao Huang, Ethan Dmitrovsky, Ruth Craig, Edward Usherwood

Dartmouth Scholarship

Viral infection results in the generation of massive numbers of activated effector CD8+ T cells that recognize viral components. Most of these are short-lived effector T cells (SLECs) that die after clearance of the virus. However, a small proportion of this population survives and forms antigen-specific memory precursor effector cells (MPECs), which ultimately develop into memory cells. These can participate in a recall response upon reexposure to antigen even at protracted times postinfection. Here, antiapoptotic myeloid cell leukemia 1 (MCL1) was found to prolong survival upon T cell stimulation, and mice expressing human MCL1 as a transgene exhibited a skewing …


Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan Jun 2014

Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan

Dartmouth Scholarship

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and …


Divergent Antibody Subclass And Specificity Profiles But Not Protective Hla-B Alleles Are Associated With Variable Antibody Effector Function Among Hiv-1 Controllers, Jennifer I. Lai, Anna F. Licht, Anne-Sophie Dugast, Todd Suscovich, Ickwon Choi, Chris Bailey-Kellogg, Galit Alter, Margaret E. Ackerman Dec 2013

Divergent Antibody Subclass And Specificity Profiles But Not Protective Hla-B Alleles Are Associated With Variable Antibody Effector Function Among Hiv-1 Controllers, Jennifer I. Lai, Anna F. Licht, Anne-Sophie Dugast, Todd Suscovich, Ickwon Choi, Chris Bailey-Kellogg, Galit Alter, Margaret E. Ackerman

Dartmouth Scholarship

Understanding the coordination between humoral and cellular immune responses may be the key to developing protective vaccines, and because genetic studies of long-term HIV-1 nonprogressors have associated specific HLA-B alleles with spontaneous control of viral replication, this subject group presents an opportunity to investigate relationships between arms of the adaptive immune system. Given evidence suggesting that cellular immunity may play a role in viral suppression, we sought to determine whether and how the humoral immune response might vary among controllers. Significantly, Fc-mediated antibody effector functions have likewise been associated with durable viral control. In this study, we compared the effector …


Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …


Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer Nov 2011

Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type …


Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña Dec 2007

Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in transformed cells is very sensitive to direct CDK9 inhibition. Thus, CDK9 could be a potential target for anti-HIV-1 therapy. A clearer understanding of the requirements for CDK9 activity in primary human T cells is needed to assess whether the CDK9-dependent step in HIV-1 transcription can be targeted clinically. We have investigated the effects …