Open Access. Powered by Scholars. Published by Universities.®

Cell Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Cell Anatomy

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran Nov 2023

Brain Microvascular Endothelial Cells Possess A Second Cilium That Arises From The Daughter Centriole, Karthikeyan Thirugnanam, Ankan Gupta, Francisco Nunez, Shubhangi Prabhudesai, Amy Y. Pan, Surya M. Nauli, Ramani Ramchandran

Pharmacy Faculty Articles and Research

Primary cilia from the brain microvascular endothelial cells (ECs) are specialized cell-surface organelles involved in mediating sensory perception, cell signaling, and vascular stability. Immunofluorescence (IF) analysis of human primary brain microvascular ECs reveals two cilia per cell. To confirm the in vitro observation of the two-cilia phenotype in human primary brain ECs, ECs isolated from mouse brain were cultured and stained for cilium. Indeed, brain ECs from a ciliopathic mouse (polycystic kidney disease or Pkd2−/−) also possess more than one cilium. Primary cilium emerges from the mother centriole. Centriole analysis by IF suggests that in brain ECs, markers …


Ciliogenesis Mechanisms Mediated By Pak2-Arl13b Signaling In Brain Endothelial Cells Is Responsible For Vascular Stability, Karthikeyan Thirugnanam, Shubhangi Prabhudesai, Emma Van Why, Amy Pan, Ankan Gupta, Koji Foreman, Rahima Zennadi, Kevin R. Rarick, Surya M. Nauli, Sean P. Palacek, Ramani Ramchandran Jun 2022

Ciliogenesis Mechanisms Mediated By Pak2-Arl13b Signaling In Brain Endothelial Cells Is Responsible For Vascular Stability, Karthikeyan Thirugnanam, Shubhangi Prabhudesai, Emma Van Why, Amy Pan, Ankan Gupta, Koji Foreman, Rahima Zennadi, Kevin R. Rarick, Surya M. Nauli, Sean P. Palacek, Ramani Ramchandran

Pharmacy Faculty Articles and Research

In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability. Here, we hypothesized that brain ECs ciliogenesis and the underlying mechanisms that control this process are critical for brain vascular stability. To investigate this hypothesis, we utilized multiple approaches including developmental zebrafish model system and primary cell culture systems. …


Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons May 2022

Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons

Electronic Theses and Dissertations

Elimination of primary cilia in cardiac neural crest cell (CNCC) progenitors is hypothesized to cause a variety of congenital heart defects (CHDs), including atrioventricular septal defects, and malformations of the developing cardiac outflow tract. We present an in vivo model of CHD resulting from the conditional elimination of primary cilia from CNCC using multiple, Wnt1:Cre-loxP, neural crest-specific systems, targeting two distinctive, but critical, primary cilia structural genes: Intraflagellar transport protein 88 (Ift88) or kinesin family member 3A (Kif3a). CNCC loss of primary cilia leads to widespread CHD, where homozygous mutant embryos (MUT) display a variety of outflow tract malformations, septation …


Patterns Of Cilia Gene Dysregulations In Major Psychiatric Disorders, Wedad Alhassen, Siwei Chen, Marquis Vawter, Brianna Kay Robbins, Henry Nguyen, Thant Nyi Myint, Yumiko Saito, Anton Schulmann, Surya M. Nauli, Olivier Civelli, Pierre Baldi, Amal Alachkar Jan 2021

Patterns Of Cilia Gene Dysregulations In Major Psychiatric Disorders, Wedad Alhassen, Siwei Chen, Marquis Vawter, Brianna Kay Robbins, Henry Nguyen, Thant Nyi Myint, Yumiko Saito, Anton Schulmann, Surya M. Nauli, Olivier Civelli, Pierre Baldi, Amal Alachkar

Pharmacy Faculty Articles and Research

Primary cilia function as cells' antennas to detect and transduce external stimuli and play crucial roles in cell signaling and communication. The vast majority of cilia genes that are causally linked with ciliopathies are also associated with neurological deficits, such as cognitive impairments. Yet, the roles of cilia dysfunctions in the pathogenesis of psychiatric disorders have not been studied. Our aim is to identify patterns of cilia gene dysregulation in the four major psychiatric disorders: schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BP), and major depressive disorder (MDD). For this purpose, we acquired differentially expressed genes (DEGs) from the …


The Localization And Function Of Novel Tetrahymena Thermophila Cytoskeletal Genes Bbc29 And Bbc39, Emily K. Moore, Nicole C. Zanolli Jan 2017

The Localization And Function Of Novel Tetrahymena Thermophila Cytoskeletal Genes Bbc29 And Bbc39, Emily K. Moore, Nicole C. Zanolli

Undergraduate Research Symposium Posters

Ciliary function is known to play an important role in many human conditions, including chronic sinus and pulmonary diseases and problems with infertility. Cilia are cytoskeletal structures that protrude from the cell body to facilitate movement. Ciliary structure is conserved throughout eukaryotes, from unicellular to multicellular organisms, including humans. A clear understanding the proteins that compose cilia and how they interact with one another will increase our knowledge about important cytoskeletal elements. Because cilia are difficult to study in multicellular organisms, the unicellular eukaryote Tetrahymena thermophila serves as a useful model for the study of cytoskeletal genes, due to their …


Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris Jun 2016

Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris

Pharmacy Faculty Articles and Research

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we …


Chemical-Free Technique To Study The Ultrastructure Of Primary Cilium, Ashraf M. Mohieldin, Wissam A. Aboualaiwi, Min Gao, Surya M. Nauli Nov 2015

Chemical-Free Technique To Study The Ultrastructure Of Primary Cilium, Ashraf M. Mohieldin, Wissam A. Aboualaiwi, Min Gao, Surya M. Nauli

Pharmacy Faculty Articles and Research

A primary cilium is a hair-like structure with a width of approximately 200 nm. Over the past few decades, the main challenge in the study of the ultrastructure of cilia has been the high sensitivity of cilia to chemical fixation, which is required for many imaging techniques. In this report, we demonstrate a combined high-pressure freezing (HPF) and freeze-fracture transmission electron microscopy (FFTEM) technique to examine the ultrastructure of a cilium. Our objective is to develop an optimal high-resolution imaging approach that preserves cilia structures in their best natural form without alteration of cilia morphology by chemical fixation interference. Our …