Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Metabolism

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Cancer Biology

A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin Aug 2022

A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin

Electronic Theses and Dissertations

Computational modeling of metabolic reactions and cellular systems is evolving as a tool for quantitative prediction of metabolic parameters and reaction pathway analysis. In this work, the basics of computational cell biology are presented as well as a summary of physical processes within the cell, and the algorithmic methods used to find time dependent solutions. Protein-protein and enzyme-substrate interactions are mathematically represented via mass action kinetics to construct sets of linear differential equations that describe reaction rates and formation of protein complexes. Using mass action methods, examples of reaction networks and their solutions are presented within the Virtual Cell simulation …


Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit May 2021

Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit

Electronic Theses and Dissertations

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. Here, we explore a putative non-canonical function for PSAT1 using biochemical approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify cellular …


Metabolic Reprogramming By Dna Tumour Viruses, Martin Prusinkiewicz Feb 2021

Metabolic Reprogramming By Dna Tumour Viruses, Martin Prusinkiewicz

Electronic Thesis and Dissertation Repository

Viruses are the etiological agents of approximately 12% of human cancers. However, only a subset of viral infections eventually progress to cancer. As obligate intracellular parasites, viruses create a host-cell environment that is amenable to virus replication. These changes to host-cell processes during infection are enacted by virally-encoded proteins that act as molecular hubs. When these processes intersect with pathways that encourage the development of cancer, such as the p53 tumour suppressor pathway, these virally-encoded molecular hub proteins function as viral oncoproteins. One major requirement of both virus infected cells and rapidly growing cancer cells is an altered metabolism that …


In Vivo Optical Metabolic Imaging Of Long-Chain Fatty Acid Uptake In Orthotopic Models Of Triple-Negative Breast Cancer, Megan C. Madonna, Joy E. Duer, Joyce V. Lee, Jeremy Williams, Baris Avsaroglu, Caigang Zhu, Riley Deutsch, Roujia Wang, Brian T. Crouch, Matthew D. Hirschey, Andrei Goga, Nirmala Ramanujam Jan 2021

In Vivo Optical Metabolic Imaging Of Long-Chain Fatty Acid Uptake In Orthotopic Models Of Triple-Negative Breast Cancer, Megan C. Madonna, Joy E. Duer, Joyce V. Lee, Jeremy Williams, Baris Avsaroglu, Caigang Zhu, Riley Deutsch, Roujia Wang, Brian T. Crouch, Matthew D. Hirschey, Andrei Goga, Nirmala Ramanujam

Biomedical Engineering Faculty Publications

Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, …


Delineating The Role Of Fatty Acid Metabolism To Improve Therapeutic Strategies For Colorectal Cancer, James Drury Jan 2021

Delineating The Role Of Fatty Acid Metabolism To Improve Therapeutic Strategies For Colorectal Cancer, James Drury

Theses and Dissertations--Toxicology and Cancer Biology

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the world, comprising over 1 million new cases each year and over 500,000 deaths. CRC, when detected at an early stage of disease development, can be effectively treated, with a 5-year survival rate of over 90%. Such standard treatments include surgical resection of the primary tumor in combination with adjuvant chemotherapy. However, even with advancements in surgical procedures and chemotherapeutic targets, when CRC progresses to a more advance stage, the 5-year survival rate decreases significantly to just under 14%. This stark decrease in patient survival rate can be directly …


Targeted Therapies In Select Gastrointestinal Cancers And Cancer Cachexia, Scott Mulder Dec 2020

Targeted Therapies In Select Gastrointestinal Cancers And Cancer Cachexia, Scott Mulder

Theses & Dissertations

Hepatocellular carcinomas exhibit metabolic alterations to support their proliferative and biosynthetic needs. We identified that elevated expression of the mitochondrial oxidative carboxylase, malic enzyme 2 (ME2), correlates with poorer hepatocellular carcinoma patient survival. Hepatocellular carcinoma patient tumors with high ME2 expression exhibit transcriptomic alterations indicative of PI3K/AKT/mTOR and c-Myc signaling as well as elevated central carbon, fatty acid, and redox metabolism pathways. Depletion of ME2 in the hepatocellular carcinoma cell line PLC or in the livers of mice treated with diethylnitrosamine to chemically induce hepatocellular carcinomas, results in impaired proliferation and reduced tumor formation. Additionally, the loss of …


Palbociclib Treatment Alters Nucleotide Biosynthesis And Glutamine Dependency In A549 Cells, Lindsey R. Conroy, Pawel Lorkiewicz, Liqing He, Xinmin Yin, Xiang Zhang, Shesh N. Rai, Brian F. Clem Jul 2020

Palbociclib Treatment Alters Nucleotide Biosynthesis And Glutamine Dependency In A549 Cells, Lindsey R. Conroy, Pawel Lorkiewicz, Liqing He, Xinmin Yin, Xiang Zhang, Shesh N. Rai, Brian F. Clem

Neuroscience Faculty Publications

Background

Aberrant activity of cell cycle proteins is one of the key somatic events in non-small cell lung cancer (NSCLC) pathogenesis. In most NSCLC cases, the retinoblastoma protein tumor suppressor (RB) becomes inactivated via constitutive phosphorylation by cyclin dependent kinase (CDK) 4/6, leading to uncontrolled cell proliferation. Palbociclib, a small molecule inhibitor of CDK4/6, has shown anti-tumor activity in vitro and in vivo, with recent studies demonstrating a functional role for palbociclib in reprogramming cellular metabolism. While palbociclib has shown efficacy in preclinical models of NSCLC, the metabolic consequences of CDK4/6 inhibition in this context are largely unknown.

Methods

In …


Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz May 2020

Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz

Honors Theses

Malignant breast cancers exhibit preferential metastasis to bone and lung (1). While changes in gene expression in lung-specific (LM) and bone-specific metastasis (BoM) lines derived from the MDA-MB-231 breast cancer line have been identified, few metabolic genes are differentially expressed; thus it is unknown if tissue-specific metabolic reprogramming occurs. Two hallmarks of cancer cells are an altered metabolic phenotype characterized by enhanced conversion of glucose to lactate in spite of adequate oxygen availability for complete mitochondrial oxidation of this substrate (referred to as aerobic glycolysis or the Warburg effect) and a greater dependence on glutamine. These changes in primary tumor …


Mitochondrial Metabolism As A Therapeutic Target For Pancreatic Cancer, Simon Shin May 2020

Mitochondrial Metabolism As A Therapeutic Target For Pancreatic Cancer, Simon Shin

Theses & Dissertations

Mitochondria are biosynthetic and bioenergetic hubs that confer cancer cells the metabolic flexibility to survive and grow in harsh tumor microenvironments. Accordingly, mitochondrial metabolism represents a promising target for pancreatic ductal adenocarcinoma (PDAC), which is frequently characterized as desmoplastic and nutrient poor. The findings presented in the first set of studies highlight the importance of mitochondria-dependent metabolic flexibility in PDAC cells upon exposure to acidic conditions. An acidic tumor microenvironment is a common feature of many solid tumors and exerts a profound influence on cancer biology. Similar to previous findings, we demonstrated that low extracellular pH induces epithelial-to-mesenchymal transition (EMT) …


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Graduate Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from …


Induction And Metastasis Of Cancer Stem Cells In Pancreatic Cancer, Rama Krishna Nimmakayala May 2019

Induction And Metastasis Of Cancer Stem Cells In Pancreatic Cancer, Rama Krishna Nimmakayala

Theses & Dissertations

Pancreatic cancer is one of the most lethal of all types of cancer with an overall 5-year survival rate of less than 8%. Cancer cells in pancreatic tumor are heterogeneous, and it is poorly understood which population is most responsible for the cancer initiation, progression and metastasis. Recent studies provide evidence for the existence of a highly tumorigenic and metastatic cells within a heterogeneous tumor known as the cancer stem cells (CSCs). Studies also provided ample evidence for the existence of distinct types of CSC populations in a heterogeneous tumor with type specific genotypic, phenotypic and functional characteristics. But, it …


Impact Of San-Mediated Signaling On Glioblastoma And Neuroblastoma Metabolism, Monica Rodriguez Silva Jun 2018

Impact Of San-Mediated Signaling On Glioblastoma And Neuroblastoma Metabolism, Monica Rodriguez Silva

FIU Electronic Theses and Dissertations

Glioblastoma (GBM) is the most common and aggressive type of brain cancer, with an average life expectancy of 15 months. The standard of care for GBM, surgery accompanied by radiation and chemotherapy (temozolomide-TMZ), has not changed in over 10 years illustrating the need for new and efficacious treatments. Therefore, it is imperative to improve our knowledge of GBM physiology to understand the mechanisms driving recurrence and chemoresistance so that more effective therapeutic options can be developed. Mitochondria-cell communication is key to monitor and maintain both mitochondrial and cellular health, and signaling events on the outer mitochondrial membrane (OMM) have emerged …


Pyruvate Kinase Isoform M2 Influences Autophagy And Related Processes In Hepatocellular Carcinoma Cells, Matthew Lin May 2018

Pyruvate Kinase Isoform M2 Influences Autophagy And Related Processes In Hepatocellular Carcinoma Cells, Matthew Lin

University Scholar Projects

Hepatocellular carcinoma (HCC) is the most common form of liver cancer that affects ~14 million people in the world. Like all cancers, HCC is a disease that arises from unstinted cellular growth initiated by genetic alterations, metabolic changes, and dysregulation in key cellular pathways. Of interest is the relationship between metabolism and cell proliferation/degradation for therapeutic targeting. Pyruvate kinase M2 is a dimeric, glycolytically inactive isoform of the final enzyme involved in glycolysis, that is often upregulated in cancerous tissue. It is thought that the enzymatic function of PKM2 outside of glycolysis contributes to the biosynthesis of anabolic intermediates used …


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

Dissertations & Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual …


Pkm2 Influences The Metabolic Fate Of Butyrate In Colorectal Cancer Cells, Megan Louise Pence May 2018

Pkm2 Influences The Metabolic Fate Of Butyrate In Colorectal Cancer Cells, Megan Louise Pence

Chancellor’s Honors Program Projects

No abstract provided.


Pre-Diagnostic Biomarkers Of Metabolic Dysregulation And Cancer Mortality, Tomi Akinyemiju, Justin Xavier Moore, Suzanne E. Judd, Maria Pisu, Michael Goodman, Virginia J. Howard, Leann Long, Monika Safford, Susan C. Gilchrist, Mary Cushman Mar 2018

Pre-Diagnostic Biomarkers Of Metabolic Dysregulation And Cancer Mortality, Tomi Akinyemiju, Justin Xavier Moore, Suzanne E. Judd, Maria Pisu, Michael Goodman, Virginia J. Howard, Leann Long, Monika Safford, Susan C. Gilchrist, Mary Cushman

Epidemiology and Environmental Health Faculty Publications

INTRODUCTION: The obesogenic milieu is a pro-tumorigenic environment that promotes tumor initiation, angiogenesis and metastasis. In this prospective cohort, we examined the association between pre-diagnostic metabolic biomarkers, plasma adiponectin, resistin, leptin and lipoprotein (a), and the risk of cancer mortality.

METHODS: Prospective data was obtained from the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort of Blacks and Whites followed from 2003 through 2012 for cancer mortality. We determined the association between metabolism biomarkers (log-transformed and tertiles) and risk of cancer mortality using Cox Proportional Hazards models with robust sandwich estimators to calculate the 95% confidence intervals (CIs), …


Loss Of Fructose-1,6-Bisphosphatase Induces Glycolysis And Promotes Apoptosis Resistance Of Cancer Stem-Like Cells: An Important Role In Hexavalent Chromium-Induced Carcinogenesis, Jin Dai, Yanli Ji, Wei Wang, Donghern Kim, Leonard Yenwong Fai, Lei Wang, Jia Luo, Zhuo Zhang Sep 2017

Loss Of Fructose-1,6-Bisphosphatase Induces Glycolysis And Promotes Apoptosis Resistance Of Cancer Stem-Like Cells: An Important Role In Hexavalent Chromium-Induced Carcinogenesis, Jin Dai, Yanli Ji, Wei Wang, Donghern Kim, Leonard Yenwong Fai, Lei Wang, Jia Luo, Zhuo Zhang

Toxicology and Cancer Biology Faculty Publications

Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate …


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon Feb 2017

Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon

Dissertations, Theses, and Capstone Projects

Mammalian target of Rapamycin (mTOR) is a protein kinase that integrates nutrient and growth factor signals to promote cellular growth and proliferation. mTOR exists in two complexes - mTORC1 and mTORC2 that are distinguished by their binding partners and signaling inputs. mTORC1 is responsive to growth factors, amino acids and glucose and is associated with Raptor; whereas, mTORC2 is responsive primarily to growth factors and is associated with Rictor. Raptor and Rictor confer substrate specificity to mTORC1 and mTORC2 respectively. Phosphatidic acid (PA), a lipid second messenger and a central metabolite for membrane phospholipid biosynthesis, is required for the stability …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Analyzation Of Metabolic Reprogramming In Drug-Resistant Mcf-7 Cells, Derick Han, Ho Leung, Andrew Vo May 2015

Analyzation Of Metabolic Reprogramming In Drug-Resistant Mcf-7 Cells, Derick Han, Ho Leung, Andrew Vo

Student Scholar Symposium Abstracts and Posters

The Warburg effect states that cancer cells mainly receive their energy from anaerobic glycolysis. Thus, mitochondria play a different role in the metabolism of cancer cells as opposed to normal, healthy cells. In chemotherapy, there is always a chance of the cancer regressing. Making drug-resistant cancer cells to analyze their metabolism may change how cancer is treated. This study aimed to create drug-resistant MCF-7 cell lines with doxorubicin in order to determine the metabolic changes that have occurred in the process of becoming resistant to drug treatments.


Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres May 2014

Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres

Dissertations & Theses (Open Access)

Pancreatic cancer is one of the most aggressive types of cancer, with poor prognosis that lacks effective diagnostic markers and therapies. It is expected that in 2014 the incidence and the mortality of pancreatic cancer in the United States will be 46,420 and 39,590 respectively. Diabetes and obesity are modifiable risk factors associated with accelerated pancreatic carcinogenesis and tumor progression, but the biological mechanisms are not completely understood. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating these epidemiologic phenomena. Our hypothesis is that obesity and diabetes mellitus type 2 (DM2) accelerate pancreatic cancer and …


Anti-Insulin Resistance Treatments Suppress Her2+ Breast Cancer Growth Via Altering Metabolism, Ping-Chieh Chou May 2014

Anti-Insulin Resistance Treatments Suppress Her2+ Breast Cancer Growth Via Altering Metabolism, Ping-Chieh Chou

Dissertations & Theses (Open Access)

Epidemiological studies have identified that type 2 diabetes mellitus (DM2) is a significant risk factor for carcinogenesis and cancer death, including breast cancer. Our previous finding in patients showed that anti-insulin resistance treatments are associated with improved HER2+ breast cancer survival of diabetic women. However, there were no transgenic mouse models to study the correlation and explain the detailed mechanism. We generated a mouse model of HER2+ breast cancer with DM2 by crossing leptin receptor point mutation (Lepr db/+) and MMTV-ErbB2 (neu) mice. The MMTV-ErbB2/Lepr db/db mice had a poor survival rate compared …


A Physical Sciences Network Characterization Of Non-Tumorigenic And Metastatic Cells, Abigail Hielscher, D. Wirtz, Et Al. Jan 2013

A Physical Sciences Network Characterization Of Non-Tumorigenic And Metastatic Cells, Abigail Hielscher, D. Wirtz, Et Al.

PCOM Scholarly Papers

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results …


Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti May 2012

Interleukin-1Β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion Through The Activation Of Ccaat Enhancer Binding Protein Β, Brenda L. Petrella, Matthew P. P. Vincenti

Dartmouth Scholarship

Effective treatment of metastatic renal cell carcinoma (RCC) remains a major medical concern, as these tumors are refractory to standard therapies and prognosis is poor. Although molecularly targeted therapies have shown some promise in the treatment of this disease, advanced RCC tumors often develop resistance to these drugs. Dissecting the molecular mechanisms underlying the progression to advanced disease is necessary to design alternative and improved treatment strategies. Tumor-associated macrophages (TAMs) found in aggressive RCC tumors produce a variety of inflammatory cytokines, including interleukin-1 b (IL-1b). Moreover, the presence of TAMs and high serum levels of IL-1b in RCC patients correlate …


Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan May 2012

Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan

Dartmouth Scholarship

PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour-bearing mice by single-dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down-regulation by shRNAs inhibits the growth of established tumours derived from two …


Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic Jan 2012

Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic

Dartmouth Scholarship

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle Oct 2009

Wnt Pathway Reprogramming During Human Embryonal Carcinoma Differentiation And Potential For Therapeutic Targeting, Grace E. Snow, Allison C. Kasper, Alexander M. Busch, Elisabeth Schwarz, Katherine E. Ewings, Thomas Bee, Michael J. Spinella, Ethan Dmitrovsky, Sarah J. Freemantle

Dartmouth Scholarship

Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.


Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander Nov 2005

Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander

Dartmouth Scholarship

The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican …