Open Access. Powered by Scholars. Published by Universities.®

Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 23 of 23

Full-Text Articles in Structural Biology

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow Aug 2023

Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow

Master's Theses

Membrane transporter proteins play the vital role of moving compounds in and out of the cell and are essential for all living organisms. ATP Binding Cassette (ABC) family transporters function both as importers and exporters in prokaryotes. MetNI is an E. coli Type I ABC transporter responsible for the uptake of methionine into the cytosol from the cell periplasmic space through the cell membrane to maintain intracellular methionine pools. ABC transporters, like other membrane proteins, are most often mechanistically and structurally studied in vitro, solubilized by detergents. However, detergent micelles may affect the conformational changes of membrane proteins relative to …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Protein Structure And Interaction: The Role Of Aromatic Residues In Protein Structure And Interactions Between Pyridoxine 5'-Phosphate Oxidase/Dopa Decarboxylase, Mohammed H. Al Mughram Jan 2022

Protein Structure And Interaction: The Role Of Aromatic Residues In Protein Structure And Interactions Between Pyridoxine 5'-Phosphate Oxidase/Dopa Decarboxylase, Mohammed H. Al Mughram

Theses and Dissertations

Naturally developed proteins are capable of carrying out a wide variety of molecular functions due to their highly precise three-dimensional structures, which are determined by their genetically encoded sequences of amino acids. A thorough knowledge of protein structures and interactions at the atomic level will enable researchers to get a deep foundational understanding of the molecular interactions and enzymatic processes required for cells, resulting in more effective therapeutic interventions. This dissertation intends to use structural knowledge from solved protein structures for two distinct objectives.

In the first project, we conducted a bioinformatics structural analysis of experimental protein structures using our …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose Dec 2019

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose

Graduate Theses and Dissertations

Since aromatic and charged residues are often present in various locations of transmembrane helices of integral membrane proteins, their impacts on the molecular properties of transmembrane proteins and their interactions with lipids are of particular interest in many studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH dependence and influence of single and multiple “guest” histidine residues in the orientation and dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to H2/22), Trp to His (W5/19 to H5/19) and Leu to His …


Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom Dec 2019

Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom

Graduate Theses and Dissertations

The work presented in this dissertation explores the structural dynamics in the chloroplast signal recognition particle pathway. Findings include cpSRP shows scanning functionality similar to that in the cytosolic SRP with the ribosome. The intrinsically disordered C-terminal tail of the Albino3 protein has some transient secondary structure. Upon binding to cpSRP43 in solution, separate secondary structure formation was identified in the C-terminal tail of Albino3. Finally, to increase efficiency of analyzing fluorescence time traces for this work, a modular software was produced.


Effective Statistical Energy Function Based Protein Un/Structure Prediction, Avdesh Mishra Aug 2019

Effective Statistical Energy Function Based Protein Un/Structure Prediction, Avdesh Mishra

University of New Orleans Theses and Dissertations

Proteins are an important component of living organisms, composed of one or more polypeptide chains, each containing hundreds or even thousands of amino acids of 20 standard types. The structure of a protein from the sequence determines crucial functions of proteins such as initiating metabolic reactions, DNA replication, cell signaling, and transporting molecules. In the past, proteins were considered to always have a well-defined stable shape (structured proteins), however, it has recently been shown that there exist intrinsically disordered proteins (IDPs), which lack a fixed or ordered 3D structure, have dynamic characteristics and therefore, exist in multiple states. Based on …


An Automated Bayesian Pipeline For Rapid Analysis Of Single-Molecule Binding Data, Carlas Smith, Karina Jouravleva, Maximiliaan Huisman, Samson M. Jolly, Phillip D. Zamore, David Grünwald Mar 2019

An Automated Bayesian Pipeline For Rapid Analysis Of Single-Molecule Binding Data, Carlas Smith, Karina Jouravleva, Maximiliaan Huisman, Samson M. Jolly, Phillip D. Zamore, David Grünwald

David Grünwald

Single-molecule binding assays enable the study of how molecular machines assemble and function. Current algorithms can identify and locate individual molecules, but require tedious manual validation of each spot. Moreover, no solution for high-throughput analysis of single-molecule binding data exists. Here, we describe an automated pipeline to analyze single-molecule data over a wide range of experimental conditions. In addition, our method enables state estimation on multivariate Gaussian signals. We validate our approach using simulated data, and benchmark the pipeline by measuring the binding properties of the well-studied, DNA-guided DNA endonuclease, TtAgo, an Argonaute protein from the Eubacterium Thermus thermophilus. We …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn Aug 2018

The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn

Electronic Theses and Dissertations

Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered through formation of complexes with close homologs. This work involves the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels and in a tissue-specific manner. They are both nuclear methyltransferases with overlapping target consensus sequences …


Studies Of Amino Acid Mutations In Drug Resistance Of The Smo Protein, Eunice Wintona Mar 2018

Studies Of Amino Acid Mutations In Drug Resistance Of The Smo Protein, Eunice Wintona

UNO Student Research and Creative Activity Fair

Smoothened receptor (SMO) is a protein that in humans, is encoded by the SMO gene. A systemic mutation in its binding pocket helps predict the sensitivity of mutant proteins to different drugs. Known as a GPCR-like receptor, it is a component of the hedgehog signaling pathway; a pathway involved in body patterning and the regulation of adult stem cells. An uncontrolled or inappropriate activation of the Hedgehog pathway drives tumor progression in cancers and a number of birth defects. To achieve these goals, the molecular modeling software MOE was used to build small molecules and drug molecules like Vismodegib and …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch Mar 2017

Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch

UNO Student Research and Creative Activity Fair

Phosphatidylinositol 3-kinases (PI3Ks) and their related pathways are reputed targets for drug-based anticancer therapies. Mutations in PI3K genes, expression, and pathways are frequent among multiple cancer types. Four isoforms of PI3Ks exist: α, β, γ, & δ and studies have identified several ligands for each isoform which are capable of serving as inhibitory therapeutic compounds. However, the biochemical efficacy of these molecules varies and the isoform selectivity is not well understood. In this study, we applied in silico docking methods and free energy calculation methods to estimate the binding of reported PI3K ligands against 5 PI3K structures: PI3Kα (PBD ID: …


Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel May 2016

Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are family of proteins that belong to a group of growth factors that are found in mammals and play an important role in angiogenesis, differentiation, organogenesis, and tissue repair. In summary, their main functionality is involved in cell division and proliferation. Because FGFs plays such a vital role in cell proliferation, they are mainly involved in the process of wound healing and injuries. FGF binds to its ligand, heparin—a heavily sulfated glycosaminoglycan. The binding of heparin to FGF occurs through electrostatic interactions, specifically between the negatively charged sulfate groups on heparin and positively charged residues such …


Human Anatomy And Physiology Preparatory Course (1st Edition), Carlos Liachovitzky Jan 2015

Human Anatomy And Physiology Preparatory Course (1st Edition), Carlos Liachovitzky

Open Educational Resources

The overall purpose of this preparatory course textbook is to help students familiarize with some terms and some basic concepts they will find later in the Human Anatomy and Physiology I course.

The organization and functioning of the human organism generally is discussed in terms of different levels of increasing complexity, from the smallest building blocks to the entire body. This Anatomy and Physiology preparatory course covers the foundations on the chemical level, and a basic introduction to cellular level, organ level, and organ system levels. There is also an introduction to homeostasis at the beginning.


Elucidation Of A Novel Pathway In Staphylococcus Aureus: The Essential Site-Specific Processing Of Ribosomal Protein L27, Erin A. Wall Jan 2015

Elucidation Of A Novel Pathway In Staphylococcus Aureus: The Essential Site-Specific Processing Of Ribosomal Protein L27, Erin A. Wall

Theses and Dissertations

Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center where it interacts with both A-site and P-site tRNAs as well as with 23S rRNA. We observed that L27 in S. aureus and other Firmicutes is encoded with a short N-terminal extension that is not present in most Gram-negative organisms, and is absent from mature ribosomes. The extension contains a conserved cleavage motif; nine N-terminal amino acids are …


Protein Structure Networks, Lesley H. Greene Jan 2012

Protein Structure Networks, Lesley H. Greene

Chemistry & Biochemistry Faculty Publications

The application of the field of network science to the scientific disciplines of structural biology and biochemistry, have yielded important new insights into the nature and determinants of protein structures, function, dynamics and the folding process. Advancements in further understanding protein relationships through network science have also reshaped the way we view the connectivity of proteins in the protein universe. The canonical hierarchical classification can now be visualized for example, as a protein fold continuum. This review will survey several key advances in the expanding area of research being conducted to study protein structures and folding using network approaches.


Pharmacological Chaperoning In Fabry Disease, Jerome Rogich Jan 2011

Pharmacological Chaperoning In Fabry Disease, Jerome Rogich

Masters Theses 1911 - February 2014

Fabry Disease is an X-­‐linked lysosomal storage disorder characterized by a variety of symptoms including hypohydrosis, seizures, cardiac abnormalities, skin lesions, and chronic pain. These symptoms stem from a lack of functional endogenous α-­‐ Galactosidase A (α-­GAL), which leads to an accrual of its natural substrate. The severity of the disease symptoms can be directly correlated with the amount of residual enzyme activity. It has been shown that an imino sugar, 1-deoxygalactonojirimycin (DGJ), can increase enzymatic activity and clear excess substrate. This pH-­‐dependent chaperoning phenomenon is believed to arise from the presence of aspartic acid 170 in the active site. …