Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 39

Full-Text Articles in Biochemistry

Comparative Animal Mucomics, Antonio R. Cerullo Feb 2024

Comparative Animal Mucomics, Antonio R. Cerullo

Dissertations, Theses, and Capstone Projects

Mucus is one of Nature’s most abundant and versatile biomaterials. These secretions are present in all animals, from the lowly garden snail to the great blue whale, and fulfill a multitude of functions, acting as antimicrobial barriers, moisturizers, adhesive glues, surface lubricants, and mineralizing agents. Despite their importance, very little is known about mucus compositions or properties. The largest challenge precluding the greater understanding of mucus function is its complexity; a single mucus contains complex mixtures of proteins, glycans, and ions that all have important roles in function. Therefore, understanding mucus function necessitates analysis that compares different mucus from one …


Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Ngly1 Deficiency Affects Glycosaminoglycan Biosynthesis And Wnt Signaling Pathway In Mice, Amy Batten Oct 2022

Ngly1 Deficiency Affects Glycosaminoglycan Biosynthesis And Wnt Signaling Pathway In Mice, Amy Batten

PANDION: The Osprey Journal of Research and Ideas

Individuals affected by NGLY1 Deficiency cannot properly deglycosylate and recycle certain proteins. Even though less than 100 people worldwide have been diagnosed with this rare autosomal recessive condition, thousands are affected by similar glycosylation disorders. Common phenotypic manifestations of NGLY1 Deficiency include severe neural and intellectual delay, impaired muscle and liver function, and seizures that may become intractable. Very little is currently known about the various mechanisms through which NGLY1 deficiency affects the body and this has led to a lack of viable treatment options for those afflicted. This experiment uses a loss-of-function (LOF) mouse model of NGLY1 Deficiency homologous …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill May 2022

Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill

Open Educational Resources

A wonderful blend of physiology, nutrition, biochemistry, genetics, biology, evolution, chemistry--what we all need to know as informed citizens. A basic knowledge of the life sciences and how our bodies work--to promote our own good health, especially as we're bombarded with misleading advertisements, soundbites, and the like. DNA fingerprinting, calorie requirements, dietary advice, genetic engineering (including gene editing with CRISPR cas9)--all in an easy-to understand book.


Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani May 2022

Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani

ETD Archive

Telomeres are a nucleoprotein structure at the end of the chromosome and are essential for genome integrity and chromosome stability. Telomere lengths are primarily maintained by a telomerase-mediated pathway but can be maintained by a homologous recombination-mediated pathway. However, detailed mechanisms of telomere maintenance are still unclear in many eukaryotes, including an important human pathogen, Trypanosoma brucei. Telomeres can be elongated by telomerase in T. brucei, a causative agent of fatal sleeping sickness in humans and nagana in cattle. T. brucei evades host immune response by regularly switching its major surface antigen, variant surface glycoprotein (VSG), a process known as …


The Role Of Rad51 In Trichomonas Vaginalis, Dominique Hall Jan 2022

The Role Of Rad51 In Trichomonas Vaginalis, Dominique Hall

University of the Pacific Theses and Dissertations

Drug resistance to the current treatments on the market is on the rise, therefore there is strong interest in understanding what could be causing the resistance, how resistance could be spreading through the population, and finding some possible new drug targets. One protein of interest is Radiation Sensitive Protein 51 (Rad51). It is a protein that is involved in homologous recombination as well as other processes such as DNA damage repair. While Trichomonas vaginalis traditionally has been known to replicate via binary fission, a modified form of closed mitosis, there is some evidence that meiosis, or at least some form …


Mhc Diversity Analysis Of Spheniscus Demersus For In Situ And Ex Situ Populations, Antonieta Van Den Berg Monsalve Jan 2022

Mhc Diversity Analysis Of Spheniscus Demersus For In Situ And Ex Situ Populations, Antonieta Van Den Berg Monsalve

Undergraduate Honors Thesis Projects

The South African Penguin has been listed as endangered by the International Union for Conservation of Nature. Major histocompatibility complex (MHC) alleles provide valuable statistics because of their variation in terms of vertebrate genomes and are pertinent to immune and reproductive health. A greater number of MHC alleles correlates with survivability of a population because the genes control the immune and reproductive systems. Legacy research by Otterbein alumni and Dr. Simon Lawrance studied MHC samples from wild, in situ, and captive, ex situ, penguin populations. By comparing these populations' major histocompatibility complexes through biostatistical analysis, contributions to conservation of the …


A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders Jan 2020

A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders

Mahurin Honors College Capstone Experience/Thesis Projects

Cancer occurs when the cell does not properly control its own cell cycle. It then replicates in an out of control fashion leading to the death of various organs and then the demise of the organism as a whole. As it seems to have always been a problem for cell-based life, certain safeguards against cancer have been evolved over time. One such method comes in the form of prevention via cyclin proteins, which are encoded from cyclin genes. The gene that is the focus of this research is the CCND1, or cyclin D1, gene that controls the progression through various …


Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro May 2018

Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro

Senior Honors Projects

In recent years, advancements in genetic testing methods have revolutionized the medical field by enhancing the ability to identify persons with an inherited predisposition to cancer. According to the American Society for Clinical Oncology, individuals should undergo genetic testing when he or she meets the following criteria: the individual demonstrates familial history that indicates a predisposition to certain cancers, the test can be adequately interpreted, and the results will aid in the diagnosis, treatment, or management of the patient or additional family members at risk. Genetic testing can be done on samples of hair, skin, blood, amniotic fluid, or other …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Venomic Characterization Of The Terebridae And Novel Terebrid Neuropeptides, Mary Elizabeth Wright Oct 2014

Venomic Characterization Of The Terebridae And Novel Terebrid Neuropeptides, Mary Elizabeth Wright

Dissertations, Theses, and Capstone Projects

Unravelling the complex mixture of neuropeptides produced by the terebrid venom duct holds the promise of discovering tomorrow's therapeutics. Cone snails have already demonstrated the potential found in the venom of these unusual marine organisms, through the commercial approval of drugs for pain and other indications. Terebrids, as the sister family to the cone snails, have been much less investigated, but have a species richness that makes them very attractive in the search for novel neuropeptides. The venomics research described in this work encompasses the first comprehensive characterization of the terebrid venom duct transcriptomes of two species, Cinguloterebra anilis and …


Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs Oct 2013

Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Set1 complex, a histone methyltransferase complex found in S. cerevisiae (budding yeast), is the only histone methyltransferase responsible for catalyzing methylation of histone H3 at Lysine 4. It possesses homologues in other species, humans included. While yeast only have the Set1 complex, the human homologues of the yeast Set1 complex include mixed-lineage leukemia family (MLL1-4), Set1 A, Set1 B, among others. MLL1-4 has been shown to play a role in transcription, cell type specification, and the development of leukemia. One application of characterizing the role of a protein is that the information gained can provide insight into the function …


Insights Into The Function Of The Fatc Domain Of Saccharomyces Cervisiae Tra1 Via Mutation And Suppressor Analysis, Samantha A. Pillon Aug 2013

Insights Into The Function Of The Fatc Domain Of Saccharomyces Cervisiae Tra1 Via Mutation And Suppressor Analysis, Samantha A. Pillon

Electronic Thesis and Dissertation Repository

The regulation of transcription is an important cellular function because it is the first step in gene regulation. In Saccharomyces cerevisiae, two protein complexes, SAGA and NuA4, act as regulators of transcription. A common protein shared between these two complexes, called Tra1, regulates transcriptional activation through its interaction with gene specific transcriptional activators. Tra1 is a member of the PIKK family of proteins, which are characterized by FAT, PI3K and FATC domains. The FATC domain encompasses the terminal 33-35 residues of the protein. Two mutations within the FATC domain, tra1-L3733A and tra1-F3744A, result in slow growth under stress …


Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac


Characterization Of Beryllium As A Novel Agent To Study Cell Cycle Arrest And Cellular Senescence, Priyatham Gorjala Dec 2012

Characterization Of Beryllium As A Novel Agent To Study Cell Cycle Arrest And Cellular Senescence, Priyatham Gorjala

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cancer cells evade senescence, apoptosis, and other constraints on proliferation, often via mutation of the p53 tumor suppressor gene (TP53). Normal human lung fibroblasts have been shown to enter premature senescence upon exposure to beryllium. In these cells, BeSO4 stabilizes p53 protein, increases p21 gene expression, induces senescence-associated β-galactosidase activity and causes cell proliferation arrest. In the present study, we have investigated whether BeSO4 is able to induce similar effects in cancer cells that have wildtype p53. We have demonstrated that beryllium salt at low concentration can induce molecular changes in the p53 signaling pathway leading to cell …


Secondary Structure, A Missing Component Of Sequence- Based Minimotif Definitions, David P. Sargeant, Michael R. Gryk, Mark W. Maciejewsk, Vishal Thapar, Vamsi Kundeti, Sanguthevar Rajasekaran, Pedro Romero, Keith Dunker, Shun-Cheng Li, Tomonori Kaneko, Martin Schiller Dec 2012

Secondary Structure, A Missing Component Of Sequence- Based Minimotif Definitions, David P. Sargeant, Michael R. Gryk, Mark W. Maciejewsk, Vishal Thapar, Vamsi Kundeti, Sanguthevar Rajasekaran, Pedro Romero, Keith Dunker, Shun-Cheng Li, Tomonori Kaneko, Martin Schiller

Life Sciences Faculty Research

Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis …


Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole Sep 2012

Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole

Dartmouth Scholarship

The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show …


Evidence For An Epigenetic Mechanism By Which Hsp90 Acts As A Capacitor For Morphological Evolution, Vincent E. Sollars, Xiangyi Lu, Li Xiao, Xiaoyan Wang, Mark D. Garfinkel, Douglas M. Ruden Aug 2012

Evidence For An Epigenetic Mechanism By Which Hsp90 Acts As A Capacitor For Morphological Evolution, Vincent E. Sollars, Xiangyi Lu, Li Xiao, Xiaoyan Wang, Mark D. Garfinkel, Douglas M. Ruden

Vincent E Sollars

Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 0-kDa protein 1α, encoded by Hsp83) is compromised during development1. Genetic selection maintains the altered phenotypes in subsequent generations1. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana2. Using a sensitized isogenic D. melanogaster strain, iso-KrIf-1, we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90’s capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen …


Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks Aug 2011

Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks

Dartmouth Scholarship

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti Mar 2010

Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti

Dartmouth Scholarship

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay …


Light-Related Photosynthetic Gene Expression And Enzyme Activity In The Heterokont Alga Vaucheria Litorea And Its Symbiotic Partner The Sacoglossan Mollusc Elysia Chlorotica, Kara M. Soule Dec 2009

Light-Related Photosynthetic Gene Expression And Enzyme Activity In The Heterokont Alga Vaucheria Litorea And Its Symbiotic Partner The Sacoglossan Mollusc Elysia Chlorotica, Kara M. Soule

Electronic Theses and Dissertations

Photosynthesis is comprised of tightly coupled reactions and therefore requires strict matrices of regulation, particularly involving alterations in gene expression and enzyme activity within the nucleus and plastid. Extensive research has been carried out on these light-regulated mechanisms in plants and green algae, however, much less is known in the red algal lineage, including heterokonts. The goal of this study was to investigate the influence of light on photosynthetic gene expression and select enzyme activity in the heterokont alga Vaucheria litorea and its symbiotic partner Elysia chlorotica, a photosynthetic sacoglossan mollusc (sea slug). Elysia chlorotica harbors V. litorea plastids …


Integral Membrane Proteins Brr6 And Apq12 Link Assembly Of The Nuclear Pore Complex To Lipid Homeostasis In The Endoplasmic Reticulum, Christine A. Hodge, Vineet Choudhary, Michael J. Wolyniak, John J. Scarcelli, Roger Schneiter, Charles N. Cole Oct 2009

Integral Membrane Proteins Brr6 And Apq12 Link Assembly Of The Nuclear Pore Complex To Lipid Homeostasis In The Endoplasmic Reticulum, Christine A. Hodge, Vineet Choudhary, Michael J. Wolyniak, John J. Scarcelli, Roger Schneiter, Charles N. Cole

Dartmouth Scholarship

Cells of Saccharomyces cerevisiae lacking Apq12, a nuclear envelope (NE)-endoplasmic reticulum (ER) integral membrane protein, are defective in assembly of nuclear pore complexes (NPCs), possibly because of defects in regulating membrane fluidity. We identified BRR6, which encodes an essential integral membrane protein of the NE-ER, as a dosage suppressor of apq12 Delta. Cells carrying the temperature-sensitive brr6-1 allele have been shown to have defects in nucleoporin localization, mRNA metabolism and nuclear transport. Electron microscopy revealed that brr6-1 cells have gross NE abnormalities and proliferation of the ER. brr6-1 cells were hypersensitive to compounds that affect membrane biophysical properties and to …


Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner Sep 2009

Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner

Dartmouth Scholarship

NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life …


Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard Aug 2009

Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard

Dartmouth Scholarship

The signal transduction pathway leading from the insulin receptor to stimulate the fusion of vesicles containing the glucose transporter GLUT4 with the plasma membrane in adipocytes and muscle cells is not completely understood. Current evidence suggests that in addition to the Rab GTPase-activating protein AS160, at least one other substrate of Akt (also called protein kinase B), which is as yet unidentified, is required. Sec8 is a component of the exocyst complex that has been previously implicated in GLUT4 trafficking. In the present study, we report that insulin stimulates the phosphorylation of Sec8 on Ser-32 in 3T3-L1 adipocytes. On the …


Ab Initio Exon Definition Using An Information Theory-Based Approach, Peter K. Rogan Mar 2009

Ab Initio Exon Definition Using An Information Theory-Based Approach, Peter K. Rogan

Biochemistry Publications

Transcribed exons in genes are joined together at donor and acceptor splice sites precisely and efficiently to generate mRNAs capa ble of being translated into proteins. The sequence variability in individual splice sites can be modeled using Shannon information theory. In the laboratory, the degree of individual splice site use is inferred from the structures of mRNAs and their relative abundance. These structures can be predicted using a bipartite information theory framework that is guided by current knowledge of biological mechanisms for exon recognition. We present the results of this analysis for the complete dataset of all expressed human exons.


Dopamine Controls Locomotion By Modulating The Activity Of The Cholinergic Motor Neurons In C. Elegans, Andrew T. Allen Jan 2009

Dopamine Controls Locomotion By Modulating The Activity Of The Cholinergic Motor Neurons In C. Elegans, Andrew T. Allen

Masters Theses 1911 - February 2014

Dopamine is an important neurotransmitter in the brain, where it plays a regulatory role in the coordination of movement and cognition by acting through two classes of G protein-coupled receptors to modulate synaptic activity. In addition, it has been shown these two receptor classes can exhibit synergistic or antagonistic effects on neurotransmission. However, while the pharmacology of the mammalian dopamine receptors have been characterized in some detail, less is known about the molecular pathways that act downstream of the receptors. As in mammals, the soil nematode Caenorhabditis elegans uses two classes of dopamine receptors to control neural activity and thus …