Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Gene expression

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 30

Full-Text Articles in Biochemistry

Physiological And Biochemical Thermal Stress Conditions Of The Ribbed Mussel, Geukensia Demissa, From Exposed And Less Exposed Areas In The Intertidal Salt Marsh On Tybee Island, Georgia., Jody E. Erber Apr 2022

Physiological And Biochemical Thermal Stress Conditions Of The Ribbed Mussel, Geukensia Demissa, From Exposed And Less Exposed Areas In The Intertidal Salt Marsh On Tybee Island, Georgia., Jody E. Erber

Honors College Theses

Geukensia demissa, the ribbed mussel, is a keystone species of Georgia’s coastline that is at risk of experiencing detrimental thermal stress due to climate change. G. demissa interacts positively with a species of salt marsh cordgrass, Spartina alterniflora. Mussels form aggregates beneath salt marsh cordgrass stems where they are shaded and less exposed to sun rays. However, some mussels end up in areas which lack cordgrass and are directly exposed to sun rays. Body temperatures of mussels from exposed areas were found to be higher than mussels from less exposed areas. Thermal stress levels of mussels can be …


Improved Radiation Expression Profiling In Blood By Sequential Application Of Sensitive And Specific Gene Signatures, Eliseos J. Mucaki, Ben C. Shirley, Peter K. Rogan Oct 2021

Improved Radiation Expression Profiling In Blood By Sequential Application Of Sensitive And Specific Gene Signatures, Eliseos J. Mucaki, Ben C. Shirley, Peter K. Rogan

Biochemistry Publications

Purpose. Combinations of expressed genes can discriminate radiation-exposed from normal control blood samples by machine learning based signatures (with 8 to 20% misclassification rates). These signatures can quantify therapeutically-relevant as well as accidental radiation exposures. The prodromal symptoms of Acute Radiation Syndrome (ARS) overlap those present in Influenza and Dengue Fever infections. Surprisingly, these human radiation signatures misclassified gene expression profiles of virally infected samples as false positive exposures. The present study investigates these and other confounders, and then mitigates their impact on signature accuracy.

Methods. This study investigated recall by previous and novel radiation signatures independently derived …


The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu Apr 2021

The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu

Senior Honors Theses

A previous study that introduced dietary folate to mice in the form of folic acid to determine if gene activity would be altered based on this biological molecule demonstrated that mice without folic acid had cognition deficits, and this phenomenon was correlated with altered gene expression in their brains. The included bioinformatic analysis revealed two main transcription factors that bind to proteins in the nucleus, and one is known as the Zinc Finger Protein 410 (Zfp410). Due to the lack of literature explaining the function of this transcription factor, this project is intended to analyze Zfp410 in detail from scratch. …


Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark Apr 2020

Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark

Honors College Theses

The advent of carbon nanotubes (CNTs) has led to a wide range of research in various fields including cancer therapy for targeting specific localized and site-specific treatment. Carbon nanotubes bound to tumor specific antibodies (Ab) offers specific treatment for cancer cells without affecting surrounding tissue. This treatment makes use of infrared absorptive properties of nanotubes to incinerate both the nanotube and its associated tumor in vivo. We seek to affirm the initial results of CNT in cancer therapy by investigating the toxicological effect in mice injected with CNT-Ab followed by microwave hypothermia. After 1-week post-injection, mice were sacrificed followed …


Multigene Signatures Of Responses To Chemotherapy Derived By Biochemically-Inspired Machine Learning., Peter K. Rogan Sep 2019

Multigene Signatures Of Responses To Chemotherapy Derived By Biochemically-Inspired Machine Learning., Peter K. Rogan

Biochemistry Publications

Pharmacogenomic responses to chemotherapy drugs can be modeled by supervised machine learning of expression and copy number of relevant gene combinations. Such biochemical evidence can form the basis of derived gene signatures using cell line data, which can subsequently be examined in patients that have been treated with the same drugs. These gene signatures typically contain elements of multiple biochemical pathways which together comprise multiple origins of drug resistance or sensitivity. The signatures can capture variation in these responses to the same drug among different patients.


Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy Jan 2019

Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy

Legacy Theses & Dissertations (2009 - 2024)

DksA is a bacterial gene regulator that functions synergistically with the stress alarmone ppGpp to mediate the stringent response. DksA also functions independently of ppGpp to regulate transcription of a number of genes. DksA function is dependent on its binding affinity to RNA polymerase and requires specific interactions between RNAP and catalytic amino acids located on the coiled coil tip, D74 and A76. While much of the previous work on DksA has focused on understanding the mechanisms of action and the numerous gene targets for transcriptional regulation, little is known about the mechanisms by which DksA expression and function may …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …


Cancerdiscover: An Integrative Pipeline For Cancer Biomarker And Cancer Class Prediction From High-Throughput Sequencing Data, Akram Mohammed, Greyson Biegert, Jiri Adamec, Tomáš Helikar Jan 2018

Cancerdiscover: An Integrative Pipeline For Cancer Biomarker And Cancer Class Prediction From High-Throughput Sequencing Data, Akram Mohammed, Greyson Biegert, Jiri Adamec, Tomáš Helikar

Department of Biochemistry: Faculty Publications

Accurate identification of cancer biomarkers and classification of cancer type and subtype from High Throughput Sequencing (HTS) data is a challenging problem because it requires manual processing of raw HTS data from various sequencing platforms, quality control, and normalization, which are both tedious and timeconsuming. Machine learning techniques for cancer class prediction and biomarker discovery can hasten cancer detection and significantly improve prognosis. To date, great research efforts have been taken for cancer biomarker identification and cancer class prediction. However, currently available tools and pipelines lack flexibility in data preprocessing, running multiple feature selection methods and learning algorithms, therefore, developing …


Circular Rna : A Review Of History, Diseases, And Diagnostic Potential, Daniel Conley Jan 2018

Circular Rna : A Review Of History, Diseases, And Diagnostic Potential, Daniel Conley

Legacy Theses & Dissertations (2009 - 2024)

Abstract


Determining The Role Of Epigenetic Factors In Antifungal Drug Resistance, Abigail R. Gress, Scott D. Briggs, Nina Serratore Aug 2017

Determining The Role Of Epigenetic Factors In Antifungal Drug Resistance, Abigail R. Gress, Scott D. Briggs, Nina Serratore

The Summer Undergraduate Research Fellowship (SURF) Symposium

Epigenetic factors are proteins that regulate gene expression by altering transcriptional machinery access to nucleosomes, DNA wrapped around histone proteins. Two classes of epigenetic factors are ATP-dependent chromatin remodelers and histone modifiers such as histone methyltransferases (HMTs), proteins that add methyl groups to histone tails. This study focuses on AIF4 (Antifungal-Induced Factor 4), a possible HMT induced upon neutral lipid depletion that we hypothesize is regulating antifungal drug resistance genes. Overexpression of AIF4 results in hypersensitivity to antifungal drugs. Studying epigenetic factors in the yeast Saccharomyces cerevisiae, including AIF4, can lead to better understanding of cell adaptation to their environments …


Elucidating The Interplay Between Sodium Selenite On The Tick Amblyomma Maculatum Selenoprotein Gene Expression, Afnan M. Beauti May 2017

Elucidating The Interplay Between Sodium Selenite On The Tick Amblyomma Maculatum Selenoprotein Gene Expression, Afnan M. Beauti

Honors Theses

Selenium (Se) is an element recognized as an essential micronutrient in eukaryote organisms. Selenoproteins contain selenium as selenocysteine, the 21st amino acid. Selenium plays a role in cell growth and functioning. At low concentrations, it can induce growth and at high concentrations, it can cause a cell to stop growing and potentially have toxic effects on the cell and organism. When selenium levels are high, oxidative stress results by the production of reactive oxidative species. Selenoproteins, however, can aid the antioxidant response in the cell. Ticks are arthropods of interest, as they are one of few that contain many selenogenes, …


Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey Jan 2017

Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey

Bioelectrics Publications

Biologically, costal cartilage is an understudied tissue type and much is yet to be learned regarding underlying mechanisms related to form and function, and how these relate to disease states, specifically chest wall deformity. Chest wall deformities have a component of inheritance, implying underlying genetic causes; however the complexity of inheritance suggests multiple genetic components. At our Centre investigations were performed on gene expression of key select genes from costal cartilage removed at surgery of patients with chest wall deformity to show high expression of decorin, a key player in collagen fiber formation and growth. Also, the degree of tissue …


The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky Jan 2017

The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky

Legacy Theses & Dissertations (2009 - 2024)

Altered carbohydrate and lipid metabolism are increasingly well characterized hallmarks of aggressive breast cancers. While aerobic glycolysis, or “the Warburg effect”, is a well-established metabolic adaptation exploited by tumor cells, the understanding of unique aspects of cancer lipid metabolism lags behind. This is especially true regarding the coordination of complex lipid synthesis and trafficking pathways, which remains poorly understood. N-Myc Downstream Regulated Gene1 (NDRG1) is overexpressed in many solid tumors, but its function is unclear. The importance of NDRG1 is best exemplified by the effect of null mutations on human physiology: inactivating mutations give rise to the severe autosomal recessive …


Role Of Hnrnp A1 In The Regulation Of Hdm2 Gene Expression, Heriberto Moran Sep 2016

Role Of Hnrnp A1 In The Regulation Of Hdm2 Gene Expression, Heriberto Moran

Dissertations, Theses, and Capstone Projects

hnRNP A1 is one of the most abundant and ubiquitously expressed member of hnRNPs (Heterogenous Nuclear Ribonucleoproteins) family of proteins that play multiple roles in gene expression by participating in major steps in the processing of nascent RNA transcripts 1. It is involved in mRNA biogenesis mechanisms such as the transcription, splicing, stability, export and translation of cellular and viral transcripts. The functions of hnRNP A1 extend to the processing of microRNAs, telomere maintenance and DNA repair 1. Our previous studies have shown that hnRNPA1 had reduced protein level and increased cytoplasmic accumulation in senescent human diploid fibroblasts 2,10. Our …


Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder Sep 2015

Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder

Sean P. Ryder

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA …


Characterizing The Role Of Aif4 In Saccharomyces Cerevisiae, Antonia L. Hur Ms., Nina Serratore Ms., Scott D. Briggs Aug 2015

Characterizing The Role Of Aif4 In Saccharomyces Cerevisiae, Antonia L. Hur Ms., Nina Serratore Ms., Scott D. Briggs

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chromatin remodelers are important regulatory mechanisms that eukaryotic cells use to modify the structure of chromatin, which is made up of DNA and proteins. DNA wraps around histone proteins to make up chromatin. When these proteins are modified, the shape of the chromatin is altered. “Loosening” the chromatin structure by chromatin modifications allows for active gene expression whereas “tightening” or compaction of chromatin results in gene repression. Therefore the modifications on chromatin modulate gene expression in all eukaryotes. It has been shown that mis-regulation of chromatin remodelers contribute to various cancers. Understanding the biochemistry behind how chromatin associating proteins modify …


Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan Jan 2015

Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan

Wayne State University Dissertations

SIN3, the scaffold protein of a histone modifying complex is conserved from yeast to mammals. Drosophila SIN3 associates with both a histone deactylase RPD3 and a histone demethylase dKDM5/LID. Immunopurification of dKDM5/LID verifies a previously observed interaction with SIN3 and RPD3. Furthermore, deficiency of dKDM5/LID phenocopies deficiency of SIN3 in many cellular and developmental processes. Knockdown of both Sin3A and lid hinder cell proliferation in Drosophila cultured cells and developing flies. Knockdown of these genes also results in a curved wing phenotype implicating a role in wing development. Analysis of underlying gene expression changes upon decreased expression of SIN3, dKDM5/LID …


The Effects Of Jasmonic Acid And Chemicals In The Ja Pathway On The Defense Systems And Gene Expression In Moss, Physcomitrella Patens And Amblystegium Serpens, Allison Shanks May 2014

The Effects Of Jasmonic Acid And Chemicals In The Ja Pathway On The Defense Systems And Gene Expression In Moss, Physcomitrella Patens And Amblystegium Serpens, Allison Shanks

Undergraduate Honors Thesis Collection

Systemic acquired resistance (SAR) is a defense system used by plants that results in increased resistance to future pathogen infection following an initial pathogen exposure. SAR in vascular plants has been well documented; however, a similar defense system has only recently been documented in non-vascular plants. It is believed that chemicals in the jasmonic acid (JA) pathway are able to activate the SAR response in vascular plants. The non-vascular plant, Amb/ystegium serpens, will be used as a model to test if SAR is triggered by JA and two other molecules in the JA pathway, 12-oxo-phytodieonic acid, and methyl jasmonate. To …


Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi Jan 2014

Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi

Biological Sciences Faculty Publications

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, …


Using Expression Profiling To Understand The Effects Of Chronic Cadmium Exposure On Mcf-7 Breast Cancer Cells, Zelmina Lubovac-Pilav, Daniel M. Borras, Esmeralda Ponce, Maggie Louie Dec 2013

Using Expression Profiling To Understand The Effects Of Chronic Cadmium Exposure On Mcf-7 Breast Cancer Cells, Zelmina Lubovac-Pilav, Daniel M. Borras, Esmeralda Ponce, Maggie Louie

Collected Faculty and Staff Scholarship

Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12), this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated …


Chronic Cadmium Exposure Stimulates Sdf-1 Expression In An Erα Dependent Manner, Esmeralda Ponce, Natalie B. Aquino, Maggie Louie Aug 2013

Chronic Cadmium Exposure Stimulates Sdf-1 Expression In An Erα Dependent Manner, Esmeralda Ponce, Natalie B. Aquino, Maggie Louie

Collected Faculty and Staff Scholarship

Cadmium is an omnipotent environmental contaminant associated with the development of breast cancer. Studies suggest that cadmium functions as an endocrine disruptor, mimicking the actions of estrogen in breast cancer cells and activating the receptor to promote cell growth. Although acute cadmium exposure is known to promote estrogen receptor-mediated gene expression associated with growth, the consequence of chronic cadmium exposure is unclear. Since heavy metals are known to bioaccumulate, it is necessary to understand the effects of prolonged cadmium exposure. This study aims to investigate the effects of chronic cadmium exposure on breast cancer progression. A MCF7 breast cancer cell …


Contribution Of Taxane Biosynthetic Pathway Gene Expression To Observed Variability In Paclitaxel Accumulation In Taxus Suspension Cultures, Rohan A. Patil, Martin E. Kolewe, Jennifer Normanly, Elsbeth L. Walker, Susan C. Roberts Jan 2012

Contribution Of Taxane Biosynthetic Pathway Gene Expression To Observed Variability In Paclitaxel Accumulation In Taxus Suspension Cultures, Rohan A. Patil, Martin E. Kolewe, Jennifer Normanly, Elsbeth L. Walker, Susan C. Roberts

Jennifer Normanly

Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences …


Ganglioside-Cytokine Interaction In The Induction Of Primary Brain Cell Death, John Charles Gorbet Jan 2010

Ganglioside-Cytokine Interaction In The Induction Of Primary Brain Cell Death, John Charles Gorbet

Open Access Theses & Dissertations

Gangliosides have been implicated in multiple pathologies affecting the central nervous system (CNS) and recent research has implicated them in playing an active role in the pathogenesis of multiple sclerosis. Empirical studies and theoretical considerations have suggested the possibility of interactions between gangliosides, like GD3, and pro-inflammatory cytokines present in the nervous system. This study sought to investigate the possibility that either individual gangliosides acting alone or complexed with other species interact with the known immune response factor TNF&alpha to initiate or facilitate cell death in the CNS. I examined the cellular viability and gene expression in primary brain cell …


Stability Of Nucleic Acid Secondary Structures And Their Contribution To Gene Expression, Maged A. Darwish Jan 2010

Stability Of Nucleic Acid Secondary Structures And Their Contribution To Gene Expression, Maged A. Darwish

Seton Hall University Dissertations and Theses (ETDs)

Bacteriorhodopsin (bR) is a highly expressed transmembrane protein that acts as a light-driven proton pump converting light energy into a proton gradient. The extraordinary levels of expression achieved (15-30 mg per liter of culture) are a result of very efficient biogenesis that originates from molecular information encoded in the bacterio-opsin gene {bop) (1). DNA sequence analysis and predictive folding algorithms suggest that the first twenty-five bases of the bop gene mRNA can form a secondary structural element (a "stem-loop"). Using biophysical methods, the goal was to determine if the stem-loop structure exists in solution conditions that mimic the in vivo …


Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller Dec 2008

Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller

Bioelectrics Publications

BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

RESULTS: Experiments …


Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai Feb 2008

Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai

Faculty Publications

Copper plays a fundamental role in regulating cell growth. Many types of human cancer tissues have higher copper levels than normal tissues. Copper can also induce gene expression. However, transcription factors that mediate copper-induced cell proliferation have not been identified in mammals. Here we show that antioxidant-1 (Atox1), previously appreciated as a copper chaperone, represents a novel copper-dependent transcription factor that mediates copper-induced cell proliferation. Stimulation of mouse embryonic fibroblasts (MEFs) with copper markedly increased cell proliferation, cyclin D1 expression, and entry into S phase, which were completely abolished in Atox1-/- MEFs. Promoter analysis and EMSA revealed that copper …


Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller Feb 2007

Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo. A critical component of this technique is the electrode configuration. Electroporation parameters were optimized for transgene expression with minimal tissue damage with a novel electrode. The highest transgene expression and efficiency of individual cell transformation with minimal damage was produced with eight 150 ms pulses at field strength of …


Live And Let Die: Regulatory Mechanisms In Fas-Mediated Apoptosis, James Curtin, Thomas Cotter Nov 2003

Live And Let Die: Regulatory Mechanisms In Fas-Mediated Apoptosis, James Curtin, Thomas Cotter

Articles

Activation of Fas receptor by Fas ligand causes caspase 8 activation and apoptosis in cells and is an important mechanism by which normal tissue homeostasis and function are maintained. Activation of caspase 8 is preceded by the formation of a death-inducing signalling complex (DISC), and a number of redundant mechanisms regulate DISC formation in vivo. Fas receptor is widely expressed in tissues, and dysfunction of the regulatory mechanisms in Fas receptor signalling has been reported in several diseases including autoimmune disease and cancer. This review aims to identify and discuss the various mechanisms employed by cells to alter their sensitivity …


Positive Regulation Of Pka On Human Gonadotropin-Releasing Hormone (Hgnrh) Gene Expression In Human Placental Jeg-3 Cells, Zhaoyang Wen Jul 2001

Positive Regulation Of Pka On Human Gonadotropin-Releasing Hormone (Hgnrh) Gene Expression In Human Placental Jeg-3 Cells, Zhaoyang Wen

Chemistry & Biochemistry Theses & Dissertations

Using the human placental choriocarcinoma JEG-3 cell line as an in vitro human placental model, we studied the mechanisms of the PKA positive regulation of the hGnRH gene expression in the human placenta. Studies in JEG3 cells showed that through the PKA catalytic subunit a, human GnRH upstream promoter activity was stimulated by PKA signaling pathway in a cAMP dependent mechanism. The sequence between —202 (Afl II) and —554 (BamH I) base pair in the human GnRH upstream promoter region appeared to be responsible for the PKA positive regulation of the gene expression. Furthermore, Western blot analysis demonstrated the involvement …


A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot May 1996

A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot

Dartmouth Scholarship

Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, …