Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

DNA

Wayne State University

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage Jan 2019

Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage

Wayne State University Dissertations

With the discovery of cisplatin in the 1960s, it has been widely studied as a precursor for anticancer drug development. Despite its effectiveness against certain cancers, clinical usage of cisplatin is restricted by a number of side effects and resistance. In the past decade, scientists have been exploring biologically important ligands such as sugar derivatives in the hope of overcoming such challenges. Attachment of a sugar moiety could facilitate lower accumulation of platinum drugs in the body as well as enhance cellular uptake. In this study, a carbohydrate-linked cisplatin analog, cis-dichlorido[(2-β-D-glucopyranosidyl)propane-1,3-diammine]platinum (5) has been studied. The aim was to evaluate …


Dna Aptamers Selected Against Wild-Type Helix 69 Ribosomal Rna And Their Implications In Combating Antibiotic Resistance, Sakina Miriam Hill Jan 2015

Dna Aptamers Selected Against Wild-Type Helix 69 Ribosomal Rna And Their Implications In Combating Antibiotic Resistance, Sakina Miriam Hill

Wayne State University Dissertations

Outbreaks of advanced antibiotic-resistant strains of microbes have hastened the need to identify new viable molecular targets for the development of novel anti-infectives. For this purpose, helix 69 (H69, or m3a 19-nucleotide (nt) hairpin motif that is highly conserved throughout phylogeny and rich in modified nucleotides, including pseudouridine () and 3-methylpseudouridine (m3) was chosen as a potential target. Helix 69, which is located in domain IV of Escherichia coli 23S ribosomal RNA (rRNA), undergoes conformational changes when in close proximity to the decoding region of 16S rRNA and transfer RNAs (tRNAs) in the peptidyl-transferase center (PTC). Functionally, the exact biological …