Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry

Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila Aug 2016

Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila

Open Access Dissertations

Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, and cardiovascular disease. The small intestine absorbs dietary fat through an efficient multi step process of digestion, uptake, metabolism, and secretion or storage. When dietary fat is taken up by the absorptive cells of the small intestine, enterocytes, it can be secreted into circulation where it contributes to blood lipid levels or temporarily stored in cytoplasmic lipid droplets (CLDs). The objective of this dissertation is to investigate …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Biochemical Investigation Of The Ubiquitin Carboxyl-Terminal Hydrolase Family, Joseph Rashon Chaney Apr 2015

Biochemical Investigation Of The Ubiquitin Carboxyl-Terminal Hydrolase Family, Joseph Rashon Chaney

Open Access Dissertations

The proteasome is the machinery in eukaryotic cells that degrades protein and recycles the amino acids. Protein degradation is a highly regulated process which starts by the attachment of chains of ubiquitin, which serves as a tag that marks a protein for degradation. This function involves the work of several proteins at the proteasome that work either as ubiquitin chaperones, ubiquitin binders or cleave ubiquitin from the protein that is to be degraded. As this is a highly regulated process, various irregularities can have deleterious effects including the onset of disease, including cardiovascular, cancer, and neurological. ^ The focus of …


Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni Oct 2014

Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni

Open Access Dissertations

As the primary products of starch digestion by pancreatic α-amylase, maltooligosaccharides (including maltose) are the main substrates for the α-glucosidases at the intestinal brush border. Here, maltose was shown to induce the formation of a higher molecular weight (HMW) sucrase-isomaltase (SI) species in Caco-2 cells that sorts more quickly to the enterocyte surface to act as a digestive enzyme. As this finding suggested a maltose sensing ability of small intestinal enterocytes, molecular mechanisms associated with the maturation and trafficking of HMW SI were further investigated. A pulse-chase experiment using [ 35S]-methionine revealed a higher rate of early trafficking and …


New Strategies To Reveal Protein Candidates In Protein-Protein Interactome Study, Meng-Chieh Chen Oct 2014

New Strategies To Reveal Protein Candidates In Protein-Protein Interactome Study, Meng-Chieh Chen

Open Access Theses

Comprehensive protein-protein interaction network analysis can help reveal protein functions in a system-wide manner. A reliable knowledgebase of interaction networks is not only important for selecting the candidates for drug therapies, but also for evaluating the disease risk. In current interaction databases, 322579 interactions comprised of 56460 proteins have been reported (statistical analysis from APID: Agile Protein Interaction DataAnalyzer; http://bioinfow.dep.usal.es/apid/index.htm). The huge datasets are contributed mainly by yeast -two -hybrid (Y2H) screening and affinity-purification followed by mass spectrometry (AP-MS). High false positive rates and failing to cover certain interaction categories are the limitations of these two methods. Here, we developed …


Effects Of Altered Expression Of The Sumo Conjugating Enzyme, Ubc9 On Mitosis, Meiosis And Conjugation In Tetrahymena Thermophila, Qianyi Yang Oct 2014

Effects Of Altered Expression Of The Sumo Conjugating Enzyme, Ubc9 On Mitosis, Meiosis And Conjugation In Tetrahymena Thermophila, Qianyi Yang

Open Access Dissertations

SUMOylation is a critical posttranslational modification in eukaryotic species. Ubc9p is the E2-conjugating enzyme for SUMOylation and consequently it influences multiple cellular pathways. Nuclear proteins are common targets of SUMOylation and regulate nuclear events such as transcription, DNA repair and mitosis. The segregation of the Tetrahymena thermophila genome into two different nuclear compartments provides an unusual context for the analysis of SUMOylation. Each cell contains a transcriptionally silent, diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid transcriptionally active somatic macronucleus (MAC) that divides by an amitotic mechanism. With the long-term goal to exploit these opportunities we …


1,25-Dihydroxyvitamin D Alters Lipid Metabolism And Epithelialto- Mesenchymal Transition In Metastatic Epithelial Breast Cancer Cells, Alle Nicole Barnard Jul 2014

1,25-Dihydroxyvitamin D Alters Lipid Metabolism And Epithelialto- Mesenchymal Transition In Metastatic Epithelial Breast Cancer Cells, Alle Nicole Barnard

Open Access Theses

Evidence suggests that high vitamin D status (marked by serum 25-hydroxyvitamin D, 25(OH)2 D) is associated with a decreased risk of breast cancer. It has been established that 1,25-dihydroxyvitamin D (1,25(OH) 2 D) can alter glycolysis and the Krebs cycle of breast cancer cells (Jiang et al., 2010; Zheng et al., 2013) but little information is available on 1,25(OH) 2 D's alterations of lipid metabolism in breast cancer cells. Thus, the current research investigates if there was an effect of 1,25(OH) 2 D on proteins that regulate lipid metabolism in MCF10A, MCF10A-ras, MCF10CA1h, and MCF10CA1a epithelial breast cancer cells. While …


Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park Jul 2014

Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park

Open Access Theses

Reversible tyrosine phosphorylation plays an important role in signaling pathways that are essential for regulating cellular growth, differentiation and metabolism. Moreover, several human diseases such as diabetes, obesity and cancers are associated with the deregulation of protein tyrosine phosphatases (PTPs). Several studies provide evidence that PTPs not only contribute to cellular differentiation, but over-expression of these molecules also leads to transformation of non-transfomed cells as well. Based on these results, designing specific PTP inhibitors may ultimately function as potential therapeutic agents to treat various diseases including cancer, diabetes, and autoimmune diseases. EphA2 is a receptor tyrosine kinase which is hypo-phosphorylated …


The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl Oct 2013

The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl

Open Access Dissertations

The purpose of this research was to advance the understanding of lower termite digestive physiology and discover potential biocatalysts that can aid in the degradation of lignocellulosic biomass. Various protein characterization and gene expression methods were used throughout this research in order to accomplish these objectives. The results of this dissertation indicate that: 1) termites and their symbionts act in a synergistic manner to degrade biomass in vitro, 2) the host fraction of the gut (i.e., foregut and midgut) is the likely site of glucose absorption, 3) the termite and its symbionts contribute specific enzymes to the digestive process, 4) …


Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla Oct 2013

Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla

Open Access Dissertations

To better understand a class of transporters known as Calcium/Cation Antiporters (CaCAs), the bacterial calcium/proton antiporter CAXCK31 was purified and characterized. New methods were developed for its heterologous overexpression and purification. These methods help to define stress responses to toxic membrane overproduction in E. coli and may be broadly applicable to studies of membrane proteins. The results from a variety of biochemical and biophysical experiments demonstrated that CAXCK31 exists as a dimer in the membrane and can be purified in the dimeric state. The methods used include chemical cross-linking, FRET, and SEC-MALS. In addition, various transport properties of CAXCK31, including …