Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 50

Full-Text Articles in Biochemistry

Utilization Of Ferrioxamine Microarrays For The Rapid Detection Of Pathogenic Bacteria, Nigam Bir Arora Dec 2016

Utilization Of Ferrioxamine Microarrays For The Rapid Detection Of Pathogenic Bacteria, Nigam Bir Arora

Open Access Dissertations

Siderophores are low-molecular weight species utilized by bacteria for the sequestration of iron, an essential nutrient. Siderophores and their cognate receptors are considered to be virulence factors, due to their prominent role in pathogenicity. The work presented here focuses on ferrioxamine (FOx) as an “immutable” ligand for pathogen detection. A number of bacterial strains expressing high-affinity FOx receptors were identified by a proteomic BLAST search, and screened against microarrays patterned with FOx conjugates for detection using label-free optical imaging. Aspects such as inkjet printing and surface chemistry, iron-limiting conditions and bacterial selection protocols, and linker conjugate design were addressed and …


Functional And Structural Characterization Of The Mevalonate Diphosphate Decarboxylase And The Isopentenyl Diphosphate Isomerase From Enterococcus Faecalis, Chun-Liang Chen Dec 2016

Functional And Structural Characterization Of The Mevalonate Diphosphate Decarboxylase And The Isopentenyl Diphosphate Isomerase From Enterococcus Faecalis, Chun-Liang Chen

Open Access Dissertations

Enterococcus faecalis causes a diverse range of nosocomial infections (in wounds, the gastrointestinal tract, the blood stream and the endocardium), and multidrug-resistant strains have become a serious issue across countries. Vancomycin, a FDA-approved drug for the disruption of the bacterial cell wall biosynthesis, has been utilized to treat infectious diseases caused by Enterococci; however, the prevalence of vancomycin-resistant enterococci (VRE) threatens communities all over the world. We aim at developing novel therapeutic strategies to control bacterial growth of Enterococci, and we focus on targeting two essential enzymes involved in poly-isoprenoid biosynthesis in Enterococcus faecalis; one is the mevalonate diphosphate decarboxylase …


Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos Dec 2016

Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos

Open Access Theses

Lignocellulose is composed of polysaccharides linked to lignin and other aromatic compounds, making the sugars not readily available to fermentation. This entails that biomass must go through the unit operations of pretreatment and enzyme hydrolysis. Pretreatment opens the structure to allow the enzymes to act on and hydrolyze cellulose and hemicellulose to glucose and/or xylose which in turn are fermented to ethanol. Concomitantly, the enzymes interact with soluble phenols and insoluble solids derived from lignin that inhibit hydrolysis. This leads to high enzyme loadings and higher production costs. Soluble phenols can be eliminated through washing. Insoluble lignin, however, demands another …


Antibacterial Activity Of Essential Oil Encapsulated Sodium Iota-Carrageenan Fibers, Carlos D. Carter Dec 2016

Antibacterial Activity Of Essential Oil Encapsulated Sodium Iota-Carrageenan Fibers, Carlos D. Carter

Open Access Theses

Spoilage microorganisms cause food waste and loss of quality. While the foodborne pathogen outbreaks lead to thousands of hospitalizations and deaths. Essential oils (EOs), plant extracts, possess the required antimicrobial activities and thus their usage stands out as a feasible approach for controlling the undesirable bacterial growth in food systems. However, EOs are highly volatile and lose their activity upon exposure to environmental conditions. In this regard, their encapsulation in Generally Recognized As Safe (GRAS) matrices such as food grade polysaccharides especially iota-carrageenan could be one of the viable alternatives. Iota-carrageenan, sulfated polysaccharide from marine algae, is being used in …


The Role Of Hif1alpha And Hif2alpha In Muscle Development And Satellite Cell Function, Shiqi Yang Dec 2016

The Role Of Hif1alpha And Hif2alpha In Muscle Development And Satellite Cell Function, Shiqi Yang

Open Access Theses

Hypoxia inducible factors (HIFs) are central mediators of cellular responses to fluctuations of oxygen, an environmental regulator of stem cell activity. Muscle satellite cells are myogenic stem cells whose quiescence, activation, self-renewal and differentiation are influenced by microenvironment oxygen levels. However, the in vivo roles of HIFs in quiescent satellite cells and activated satellite cells (myoblasts) are poorly understood. Expression analyses indicate that HIF1α and HIF2α are preferentially expressed in pre- and post-differentiation myoblasts, respectively. Interestingly, double knockout of HIF1α and HIF2α (HIF1α/2α dKO) in embryonic myoblasts results in apparently normal muscle development and growth. However, HIF1α/2α dKO in postnatal …


Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila Aug 2016

Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila

Open Access Dissertations

Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, and cardiovascular disease. The small intestine absorbs dietary fat through an efficient multi step process of digestion, uptake, metabolism, and secretion or storage. When dietary fat is taken up by the absorptive cells of the small intestine, enterocytes, it can be secreted into circulation where it contributes to blood lipid levels or temporarily stored in cytoplasmic lipid droplets (CLDs). The objective of this dissertation is to investigate …


Biochemical Changes In Animal Models Of Fetal Alcohol Spectrum Disorder, Christine E. M. Keller Aug 2016

Biochemical Changes In Animal Models Of Fetal Alcohol Spectrum Disorder, Christine E. M. Keller

Open Access Dissertations

Fetal alcohol spectrum disorder (FASD) is a completely preventable disease, that has profound effects on life-long health and function of the affected individual. Prevalence estimates of FASD in the United States indicate 33.5 per 1,000 live births are affected with this disorder (Roozen, 2016). FASD is caused by maternal ethanol intake during pregnancy. However, recommendations of the amounts of alcohol safe to drink during pregnancy are not established. Further, we lack a comprehensive understanding of the biochemical pathways modified in prenatal ethanol exposure. Biomarkers are also lacking. Our results demonstrate the vast array of biochemical pathways modified in the chronic …


Investigation Of An Energetic Coupling Between Ligand Binding And Protein Folding, Nathan W. Gardner Aug 2016

Investigation Of An Energetic Coupling Between Ligand Binding And Protein Folding, Nathan W. Gardner

Open Access Dissertations

The cellular environment presents a protein with many small molecules with which it may interact. Many novel interactions between proteins and non-substrate metabolites are being uncovered through proteome-wide screens. The homodimeric Escherichia coli cofactor-dependant phosphoglycerate mutase (dPGM) was identified as an ATP binding protein in a proteome-wide screen, but dPGM does not use ATP for catalysis. This dissertation elucidates the effect of ATP and other non-substrate metabolites on dPGM. Initial investigations revealed a partially unfolded, monomeric intermediate of dPGM that forms during equilibrium unfolding. ATP binding was found to occur at the active site of dPGM and to be energetically …


Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace Aug 2016

Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace

Open Access Theses

The market for bio-based products from plant sources is on the rise. There is a global challenge to implement environmentally clean practices for the production of fuels and pharmaceuticals from sustainable resources. A significant hurdle for discovery of comparable plant-derived products is the extensive volume of trial-and-error experimentation required. To alleviate the experimental burden, a quantum mechanics based molecular modeling approach known as the COnductor-like Screening Model for Real Solvents (COSMO-RS) was used to predict the best biphasic solvent system to purify silymarins from an aqueous mixture. Silymarins are a class of flavonolignans present in milk thistle ( Silybum marianum …


Biophysical Studies Of The Allosteric Regulatory Mechanism Of Syk Tandem Sh2 Domains Interacting With Immunoreceptor Tyrosine-Based Activation Motifs, Chao Feng Apr 2016

Biophysical Studies Of The Allosteric Regulatory Mechanism Of Syk Tandem Sh2 Domains Interacting With Immunoreceptor Tyrosine-Based Activation Motifs, Chao Feng

Open Access Dissertations

The non-receptor spleen tyrosine kinase (Syk) is an important player in signal transduction from immunoreceptors to various downstream targets. It is widely expressed in both haematopoietic and epithelial cells. Syk disorder is closely related with many inflammatory and autoimmune diseases, as well as cancers.

Syk associates with immunoreceptors through its tandem SH2 domains (tSH2), which contain two SH2 domains connected by interdomain A. The association of Syk with immunoreceptors is regulated by Y130 phosphorylation in interdomain A. The unphosphorylated tSH2 can bind with the doubly phosphorylated immunoreceptor tyrosine-based activation motif (dp-ITAM) of the cytoplasmic domains of immunoreceptors with very high …


Mechanistic Characterization Of Acetic Acid Resistance Enzymes Of Acetobacer Aceti, Jesse R. Murphy Apr 2016

Mechanistic Characterization Of Acetic Acid Resistance Enzymes Of Acetobacer Aceti, Jesse R. Murphy

Open Access Dissertations

Acetobacter aceti (A. aceti) is a Gram-negative, acidophilic bacterium that is used for the industrial production of acetic acid from ethanol. Oxidation of ethanol by membrane-bound oxidoreductases provides energy for A. aceti and the production of high concentrations of acetic acid is an effective defense mechanism. Acetic acid diffuses through cell membranes at low pH and effectively kills many bacteria, including E. coli, at low millimolar concentrations. The ability of A. aceti to thrive in molar concentrations of acetic acid is partially due to the twin subjects of this thesis, the acetic acid resistance factors AarA (citrate synthase, …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Learning The Abc's Of Ribose Transport Using Biophysical Methods, Satchal K. Erramilli Apr 2016

Learning The Abc's Of Ribose Transport Using Biophysical Methods, Satchal K. Erramilli

Open Access Dissertations

ATP-binding cassette transporters comprise a large superfamily of proteins that are involved in a variety of biological phenomenon, from bacterial metabolism to cellular homeostasis, antigen-presentation, and drug resistance. These proteins are implicated in a variety of clinically relevant phenomenon, including the human diseases cystic fibrosis, macular degeneration, and cancer. Understanding their structure-function can guide therapeutics and contribute to our overall understanding of these biological phenomena.

This study focuses on understanding the motor protein of the bacterial ribose ABC transporter in the context of transport. This complex is required for the uptake of the nucleotide precursor, ribose. Using biophysical methods, we …


Characterization Of Cu-Rich Aggregates In Neurogenic Niches Of The Rodent Brain By X-Ray Fluorescence Microscopy, Brendan T. Sullivan Apr 2016

Characterization Of Cu-Rich Aggregates In Neurogenic Niches Of The Rodent Brain By X-Ray Fluorescence Microscopy, Brendan T. Sullivan

Open Access Dissertations

Copper is an essential element in the brain playing several critical roles ranging from neurotransmitter synthesis to ATP production. As Cu is typically present in micromolar concentrations and has a spatially capricious distribution in the brain, determining concentrations has historically been challenging. X-ray fluorescence microscopy (XRF) offers excellent spatial resolution (down to 30~nm) and detection limits (sub parts per million), making it an excellent tool for analyzing metal distributions in the brain. Using XRF, it is demonstrated that Cu-rich aggregates with concentrations in the hundreds of millimolar are present in the subventricular zone of rats and mice. As the subventricular …


Investigating And Expanding The Functionality Of Rna Catalysts: Studies Of The Hepatitis Delta Virus, The Hammerhead, And The Aminoacyl-Trna Synthetase-Like Ribozymes, Ji Chen Jan 2016

Investigating And Expanding The Functionality Of Rna Catalysts: Studies Of The Hepatitis Delta Virus, The Hammerhead, And The Aminoacyl-Trna Synthetase-Like Ribozymes, Ji Chen

Open Access Dissertations

Ribozymes, just like protein enzymes, catalyze diverse chemical reactions. The first goal of this dissertation is to understand the mechanism of ribozyme-mediated phosphodiester cleavage reaction. Biochemical assays and X-ray crystallography were used for probing the active site of two small self-cleaving ribozymes, the hepatitis delta virus (HDV) ribozyme and the hammerhead ribozyme. Results presented here suggest that divalent metal ions play critical roles in the catalytic mechanisms of both the HDV and the hammerhead ribozymes. In the HDV ribozyme, the result is consistent with an active site Mg2+ being directly involved in catalysis. In the hammerhead ribozyme, however, Mg2+ ions …


Structural And Functional Studies Of The Papain-Like Protease 2 From Mouse Hepatitis Virus, Yafang Chen Dec 2015

Structural And Functional Studies Of The Papain-Like Protease 2 From Mouse Hepatitis Virus, Yafang Chen

Open Access Dissertations

Our goal is to establish a system to investigate how the deubiquitinating (DUB) and deISGylating activities of coronavirus (CoV) papain-like protease domains (PLPs) are involved in virus immune evasion. To this end, we chose PLP2 from mouse hepatitis virus (MHV) as our target of study because MHV has historically served as a model system for the study of CoVs, and it has undeniable advantage of ease in culturing in comparison to human coronaviruses.

It is reported here the expression and purification of a region of MHV nsp3 that contains the catalytic core of the PLP2 domain and its neighboring domains. …


Paralogous Genes In Arabidopsis Thaliana Contribute To Diversified Phenylpropanoid Metabolism, Li Yi Apr 2015

Paralogous Genes In Arabidopsis Thaliana Contribute To Diversified Phenylpropanoid Metabolism, Li Yi

Open Access Dissertations

Significant evidence supports the idea that gene duplication drives the evolution of new gene function. Besides being silenced, duplicated genes can either neofunctionalize or subfunctionalize under selective pressure or neutral drift. Understanding the trajectory of how each gene is fixed and presumably provides added fitness remains difficult. Plant specialized metabolism provides an attractive platform to study the fixation of genes post duplication and how this process leads to the chemical diversity seen today. Specialized metabolites by definition are thought to be dispensable under normal growth conditions. Thus deleterious mutations occurring in paralogous genes that otherwise would be selected against in …


Novel Methods For Manipulating Ion Types In The Solution And Gas Phases For The Structural Analysis Of Biomolecules Using Mass Spectrometry, Christine M Fisher Apr 2015

Novel Methods For Manipulating Ion Types In The Solution And Gas Phases For The Structural Analysis Of Biomolecules Using Mass Spectrometry, Christine M Fisher

Open Access Dissertations

Mass Spectrometry has become a valuable tool for the analysis of a variety of molecules, making it applicable to many fields. The advent of nanoelectrospray ionization (nESI) as a soft/low energy ionization technique has enabled the analysis of large, intact biomolecules. Most mass spectrometry experiments consist of three main steps: ionization, probe step(s), and mass analysis. The present work focuses on a variety of methods for altering ion types at various stages of the mass spectrometry experiment to affect ion fragmentation. Ion types can be manipulated in the solution/droplet phases using novel nESI emitters, generated from borosilicate theta capillaries. These …


Developmentally Regulated Sumoylation In The Ciliate Tetrahymena Thermophila, Amjad M. Nasir Apr 2015

Developmentally Regulated Sumoylation In The Ciliate Tetrahymena Thermophila, Amjad M. Nasir

Open Access Dissertations

The Small Ubiquitin-like MOdifier (SUMO) protein regulates numerous nuclear events such as transcription, mitosis and meiosis and DNA repair. These processes are critical to the programmed nuclear events of conjugation in ciliates and provide the potential to investigate developmentally regulated SUMOylation. We predicted a developmental increase in SUMOylation during late conjugation based on the extensive genome remodeling in the developing macronucleus (anlagen) ofTetrahymena thermophila. Immunoblotting of cell lysates from vegetative and mating cells using anti-SUMO antibodies revealed distinct developmental differences and an increased signal correlated with formation of the anlagen. Immunofluorescence of mating Tetrahymena cells with the same antibody …


An Active Site Loop Mutant Of A Zinc Metallo-Deubiquitinase Suggests The Importance Of Loop Dynamics To Catalysis, Amy N. Bueno Apr 2015

An Active Site Loop Mutant Of A Zinc Metallo-Deubiquitinase Suggests The Importance Of Loop Dynamics To Catalysis, Amy N. Bueno

Open Access Theses

AMSH is a conserved zinc metalloprotease that functions with endosomal sorting complexes required for transport (ESCRT) machinery in order to down regulate and degrade cell-surface receptors. It has been shown to have high specificity toward Lys63-linked polyubiquitin chains, a signal used for receptor down regulation by ESCRT machinery. It has previously been found that Sst2, an AMSH orthologue from fission yeast, contains a flexible "loop" near the proximal ubiquitin binding site, composed of residues L402 and F403. The different mobility of the side chains of these residues contribute to the opening and closing conformation of the catalytic cleft which allow …


Biochemical Investigation Of The Ubiquitin Carboxyl-Terminal Hydrolase Family, Joseph Rashon Chaney Apr 2015

Biochemical Investigation Of The Ubiquitin Carboxyl-Terminal Hydrolase Family, Joseph Rashon Chaney

Open Access Dissertations

The proteasome is the machinery in eukaryotic cells that degrades protein and recycles the amino acids. Protein degradation is a highly regulated process which starts by the attachment of chains of ubiquitin, which serves as a tag that marks a protein for degradation. This function involves the work of several proteins at the proteasome that work either as ubiquitin chaperones, ubiquitin binders or cleave ubiquitin from the protein that is to be degraded. As this is a highly regulated process, various irregularities can have deleterious effects including the onset of disease, including cardiovascular, cancer, and neurological. ^ The focus of …


Role Of Syk In The Regulation Of Cytoskeleton And Stress Granules In Breast Cancer, Mariya Krisenko Apr 2015

Role Of Syk In The Regulation Of Cytoskeleton And Stress Granules In Breast Cancer, Mariya Krisenko

Open Access Dissertations

The Syk protein-tyrosine kinase, a well-characterized modulator of immune recognition receptor signaling, also plays important, but poorly characterized, roles in tumor progression, acting as an inhibitor of cellular motility and metastasis in highly invasive cancer cells. Multiharmonic atomic force microscopy (AFM) was used to map nanomechanical properties of live MDA-MB-231 breast cancer cells either lacking or expressing Syk. The expression of Syk dramatically altered the cellular topography, reduced cell height, increased elasticity, increased viscosity, and allowed visualization of a more substantial microtubule network. The microtubules of Syk-expressing cells were more stable to nocodazole-induced depolymerization and were more highly acetylated than …


Structural And Biophysical Analysis Of The Proteasomal Deubiquitinase, Uch37, Marie Elizabeth Morrow Apr 2015

Structural And Biophysical Analysis Of The Proteasomal Deubiquitinase, Uch37, Marie Elizabeth Morrow

Open Access Dissertations

Ubiquitin carboxyl-terminal hydrolase 37, or UCH37, is a deubiquitinating enzyme associated with the 26S proteasome, the primary protein degradation machinery in eukaryotic cells. UCH37 is responsible for the disassembly of polymeric ubiquitin chains, or polyubiquitin, which have been ligated onto proteins in order to target them for degradation. The 26S utilizes two associated deubiquitinating enzymes, UCH37 and USP14, and one intrinsic, Rpn11, to remove polyubiquitin chains from substrate proteins as they are unfolded and translocated into the proteolytic core of the proteasome, where proteins are cleaved into small peptides and then released for recycling by the cell. UCH37 associates with …


Support Needs Of Young Ovarian Cancer Survivors: A Pilot Study, Aurelie Chuong Apr 2015

Support Needs Of Young Ovarian Cancer Survivors: A Pilot Study, Aurelie Chuong

Open Access Theses

Purpose. Young ovarian cancer survivor (18 years old or older but diagnosed before the age of 34 years old) support needs (i.e., physical and daily living, psychological, sexual, patient care and support, health system and information) were examined to guide the design and implementation of future young adult and adolescent cancer support groups and interventions. Method. This cross-sectional pilot study included 11 young ovarian cancer survivors. The Supportive Care Needs Survey Short Form 34 (SCNS-SF34) was used and open-ended questions were added. Results. The calculated standardized scores for the SCNS-SF34 survey results showed that sexuality needs were ranked highest (41.7 …


Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni Oct 2014

Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni

Open Access Dissertations

As the primary products of starch digestion by pancreatic α-amylase, maltooligosaccharides (including maltose) are the main substrates for the α-glucosidases at the intestinal brush border. Here, maltose was shown to induce the formation of a higher molecular weight (HMW) sucrase-isomaltase (SI) species in Caco-2 cells that sorts more quickly to the enterocyte surface to act as a digestive enzyme. As this finding suggested a maltose sensing ability of small intestinal enterocytes, molecular mechanisms associated with the maturation and trafficking of HMW SI were further investigated. A pulse-chase experiment using [ 35S]-methionine revealed a higher rate of early trafficking and …


Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He Oct 2014

Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He

Open Access Dissertations

Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and …


The Modification Of Brucine Derivatives As Chiral Ligands And Its Application In The Asymmetric Synthesis, Jian-Yuan Li Oct 2014

The Modification Of Brucine Derivatives As Chiral Ligands And Its Application In The Asymmetric Synthesis, Jian-Yuan Li

Open Access Dissertations

The modification of brucine derivatives as chiral ligands and the use of a multifaceted chiral ligand, brucine diol, under different reaction conditions to produce various optical isomers is described. In Chapter 1, the generation of a number of brucine derivatives is described. Taking the advantage of brucine-diol's excellent molecular recognition capability for multiple organic functional groups, we focused on the synthetic modifications of brucine-diol and the synthesis of brucine N-oxide. We also produced various brucine derivatives with different functional moieties in good yields and selectivities. ^ In Chapter 2, we described the investigation of brucine N-oxide catalyzed Morita-Baylis-Hillman …


New Strategies To Reveal Protein Candidates In Protein-Protein Interactome Study, Meng-Chieh Chen Oct 2014

New Strategies To Reveal Protein Candidates In Protein-Protein Interactome Study, Meng-Chieh Chen

Open Access Theses

Comprehensive protein-protein interaction network analysis can help reveal protein functions in a system-wide manner. A reliable knowledgebase of interaction networks is not only important for selecting the candidates for drug therapies, but also for evaluating the disease risk. In current interaction databases, 322579 interactions comprised of 56460 proteins have been reported (statistical analysis from APID: Agile Protein Interaction DataAnalyzer; http://bioinfow.dep.usal.es/apid/index.htm). The huge datasets are contributed mainly by yeast -two -hybrid (Y2H) screening and affinity-purification followed by mass spectrometry (AP-MS). High false positive rates and failing to cover certain interaction categories are the limitations of these two methods. Here, we developed …


Transformation Of Biomass Carbohydrates By Transition Metal Catalysts, Christine M Bohn Oct 2014

Transformation Of Biomass Carbohydrates By Transition Metal Catalysts, Christine M Bohn

Open Access Dissertations

By selectively removing functional groups from biomass derived carbohydrates, valuable platform chemicals can be generated from renewable sources. Through dehydration chemistry glucose can be upgraded into 5-(Hydroxymethyl)-2-furfuraldehyde (HMF) and levulinic acid. Iron (III) chloride hexahydrate has shown moderate activity to transform glucose into HMF and has also shown high yields and selectivity for the production of levulinic acid. Typically synthesized from acidic solutions made with mineral acids, levulinic acid has now been produced in high yields with a metal salt. The difference between maximizing production for HMF or levulinic acid from the same catalyst relies on the control of the …


Effects Of Altered Expression Of The Sumo Conjugating Enzyme, Ubc9 On Mitosis, Meiosis And Conjugation In Tetrahymena Thermophila, Qianyi Yang Oct 2014

Effects Of Altered Expression Of The Sumo Conjugating Enzyme, Ubc9 On Mitosis, Meiosis And Conjugation In Tetrahymena Thermophila, Qianyi Yang

Open Access Dissertations

SUMOylation is a critical posttranslational modification in eukaryotic species. Ubc9p is the E2-conjugating enzyme for SUMOylation and consequently it influences multiple cellular pathways. Nuclear proteins are common targets of SUMOylation and regulate nuclear events such as transcription, DNA repair and mitosis. The segregation of the Tetrahymena thermophila genome into two different nuclear compartments provides an unusual context for the analysis of SUMOylation. Each cell contains a transcriptionally silent, diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid transcriptionally active somatic macronucleus (MAC) that divides by an amitotic mechanism. With the long-term goal to exploit these opportunities we …