Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Structural Biology

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 176

Full-Text Articles in Biochemistry

On The Anti-Adipogenic Function Of Collagen Triple Helix Repeat-Containing Protein 1, Matthew E. Siviski Dec 2023

On The Anti-Adipogenic Function Of Collagen Triple Helix Repeat-Containing Protein 1, Matthew E. Siviski

Electronic Theses and Dissertations

Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors, including PPAR-gamma (PPARG) and C/EBP alpha (CEBPA). Thus, dysregulated adipogenesis predisposes adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that mice possessing a homozygous null gene mutation in collagen triple helix repeat-containing protein 1 (CTHRC1) have increased adiposity compared to wildtype mice, supporting the concept that CTHRC1 regulates body composition. Herein, we investigated the anti-adipogenic activity of CTHRC1. Using 3T3-L1 preadipocytes, we showed significantly reduced adipogenic differentiation in the presence of CTHRC1 commensurate to marked suppression of Cebpa and Pparg gene expression. In addition, CTHRC1 increased …


Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield Dec 2023

Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield

Electronic Theses and Dissertations

Flavonoid glycosyltransferases (GTs), enzymes integral to plant ecological responses and human pharmacology, necessitate rigorous structural elucidation to decipher their mechanistic function and substrate specificity, particularly given their role in the biotransformation of diverse pharmacological agents and natural products. This investigation delved into a comprehensive exploration of the flavonol 3-O GT from Citrus paradisi (Cp3GT), scrutinizing the impact of a c-terminal c-myc/6x histidine tag on its enzymatic activity and substrate specificity, and successfully achieving its purification to apparent homogeneity. This established a strong foundation for potential future crystallographic and other structure/function analyses. Through the strategic implementation of site-directed mutagenesis, a thrombin …


The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou Dec 2023

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou

Doctoral Dissertations

Candida albicans phosphatidylserine (PS) synthase, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis due to its importance in virulence, absence in the host and conservation among fungal pathogens. This dissertation is focused on the identification of inhibitors for this membrane enzyme. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif present within Cho1, and here we revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1. For serine, we have predicted a …


Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang Dec 2023

Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang

All Dissertations

DNA base damage is common due to exposure to various endogenous and exogenous factors. To repair the base lesions, such as uracil from cytosine deamination, enzymes from the uracil-DNA glycosylase (UDG) superfamily are critical, which can recognize the damaged base and initiate the base excision repair (BER) pathway. There used to be six families of proteins identified in the UDG superfamily until a new member, UDGX, was found in Mycobacterium smegmatis, which is a unique DNA-crosslinking UDG. In this dissertation work, a series of biochemical analyses of the newly found UDGX are performed, including the analyses of structures, functions, …


Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder Nov 2023

Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder

Masters Theses

The degradation and recycling of protein is a process essential for the maintenance and regulation of cellular function. More specifically, in Caulobacter crescentus, the ClpXP protease is responsible for driving progression through the cell cycle and protein quality control. This protease utilizes three known adaptors to selectively degrade proteins that initiate different stages of development. This thesis will elaborate on the specific binding interface on one of these adaptors, PopA, with another, RcdA, and focus in on specific residues on PopA and investigate their roles in adaptor binding and delivery of CtrA, the master regulator of Caulobacter. Finally, I …


Protein Stability In Solution And In The Gas Phase., Yousef Haidar Sep 2023

Protein Stability In Solution And In The Gas Phase., Yousef Haidar

Electronic Thesis and Dissertation Repository

Electrospray Ionization mass spectrometry (ESI-MS) is widely used for probing proteins, yet many aspects of this technique remain elusive. Using MS, ion mobility spectrometry (IMS), and circular dichroism (CD) spectroscopy, this thesis sheds light on the stability differences of proteins in the gas phase and solution. After a general introduction (Chapter 1), Chapter 2 scrutinizes some aspects of native ESI. Our data highlight the significance of cone voltage in maintaining a native-like fold and show the advantage of using NH4Ac in protein experiments. Chapter 3 focuses on hydrogen/deuterium exchange (HDX)-MS. Several studies have reported that D2O …


Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow Aug 2023

Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow

Master's Theses

Membrane transporter proteins play the vital role of moving compounds in and out of the cell and are essential for all living organisms. ATP Binding Cassette (ABC) family transporters function both as importers and exporters in prokaryotes. MetNI is an E. coli Type I ABC transporter responsible for the uptake of methionine into the cytosol from the cell periplasmic space through the cell membrane to maintain intracellular methionine pools. ABC transporters, like other membrane proteins, are most often mechanistically and structurally studied in vitro, solubilized by detergents. However, detergent micelles may affect the conformational changes of membrane proteins relative to …


New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang May 2023

New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang

All Dissertations

Uracil-DNA glycosylase (UDG) superfamily, which consists of several groups of enzymes that recognize the damaged DNA bases and initiate the base excision repair (BER) pathway, is most important in dealing with DNA deamination and other base modifications. Thymine DNA glycosylase (TDG), which belongs to family 2 in the UDG superfamily, is able to specifically recognize and cleave the 5-methylcytosine (mC) oxidative derivatives including 5-formylcytosine (fC), 5-carboxylcytosine (caC), 5-hydromethyluracil (hmU) caused by active demethylation or DNA damage. My dissertation work is mainly focused on the fC and caC glycosylase activity within UDG superfamily. Chapter 1 is a general introduction to the …


Expression, Purification, And Characterization Of Fibroblast Growth Factor 19, Elizabeth Ford May 2023

Expression, Purification, And Characterization Of Fibroblast Growth Factor 19, Elizabeth Ford

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are a family of signaling proteins with diverse biological functions. Fibroblast growth factor 19 (FGF19) regulates several vital physiological processes, including bile acid, glucose, and lipid homeostasis. However, its therapeutic potential is limited by its structural instability. The purpose of this study is to express, purify, and characterize recombinant FGF19 to build the foundation for the creation of stable mutants, which can be used to treat a variety of common diseases including type 2 diabetes, atherosclerosis, and nonalcoholic fatty liver disease. The parameters for overexpression in Escherichia coli were optimized according to optical density, inducer concentration, …


Determination Of Cadmium Uptake In Crassostrea Virginica Shell Under Controlled Conditions, Joseph John Pavelites Ii May 2023

Determination Of Cadmium Uptake In Crassostrea Virginica Shell Under Controlled Conditions, Joseph John Pavelites Ii

<strong> Theses and Dissertations </strong>

The objective of this thesis was to meet growing demand for the development of environmental biomonitors that protect ecosystems and public health. To do this, I determined the potential of oyster shell as a bioindicator of cadmium (Cd) in the environment by determining the mode of Cd uptake and relationships between Cd concentrations in the environment, shell, and soft tissues of juvenile eastern oysters (Crassostrea virginica Gmelin). I performed a review of the literature on the ability of oyster shell to retain metal contaminants and the factors that could affect this process (Chapter 2). I then reared C. virginica …


The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish Apr 2023

The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish

Honors Theses

Biofilms are communities of surface-attached bacterial cells encased in an exopolymeric matrix. In this state, they are more resistant to antimicrobial treatment and can have adverse effects in medical, agricultural, and industrial settings. Whereas, as biocatalysts, biofilms from nonpathogenic bacteria enhance their performance and stability in catalysis. Unfortunately, there are several challenges when using bacteria in organic transformations due to their complex cellular chemistry. Trivalent lanthanide metals were discovered to serve regulatory roles in some bacterial catalytic processes, including those of Pseudomonas putida KT2440 (P. putida), a non-infectious Gram-negative bacterium. The main goal of our research is to use cerium(III) …


Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic Feb 2023

Characterizing The Roles Of The Variable Linker And Hub Domains In Camkii Activation, Noelle Dziedzic

Doctoral Dissertations

Learning and memory formation at the cellular level involves decoding complex electrochemical signals between nerve cells, or neurons. Understanding these processes at the molecular level requires a comprehensive study of calcium-sensitive proteins that serve as signal mediators within cells. More specifically, the protein calcium/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of downstream cellular signaling events in the brain, playing an important role in long term memory formation. CaMKII is encoded in humans on four different genes: alpha, beta, gamma and delta. For added complexity, each of these gene products can be alternatively spliced and translated into multiple protein …


Mitochondrial Division: Synergizing In Mitochondrial Divisome, Ao Liu Jan 2023

Mitochondrial Division: Synergizing In Mitochondrial Divisome, Ao Liu

Dartmouth College Ph.D Dissertations

Mitochondria are the energy factories of the cell. The dynamic nature of cells demands routine changes in mitochondrial morphology by fusion and division. The dynamin GTPase Drp1 is a central mitochondrial division protein, driving constriction of the outer mitochondrial membrane via oligomerization. At least four regulatory factors control Drp1 activity on the outer mitochondrial membrane (OMM): 1) receptor proteins (Mff, MiD49, MiD51, and Fis1); 2) actin filaments; 3) the mitochondrial phospholipid cardiolipin (CL); and 4) Drp1 post-translational modifications, of which two phosphorylation sites (S579 and S600) are the most well studied. However, the molecular mechanism of how these factors work …


Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban Dec 2022

Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban

Graduate Theses and Dissertations

Nitrogenase is the metalloenzyme only found in bacteria and archaea that is essential for biological nitrogen fixation (diazotrophy), but it can also serve as a catalyst in biofuel production. All diazotrophs contain a molybdenum (Mo) nitrogenase, while some species contain additional alternative nitrogenases where either vanadium (V) or iron (Fe) replace Mo in the active site cofactor. Nitrogen fixation by bacteria has been extensively studied. The limited investigation of nitrogen fixation in methanogenic archaea (methanogens) indicates production of nitrogenase is simpler than in bacteria and methanogen nitrogenase has different biochemical properties. Thus, methanogen nitrogenases provide a promising alternative for genetic …


Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias Sep 2022

Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias

Chemistry Theses

Protein cages found in nature have the ability to protect and develop new nanomaterials in order to enhance catalytic reactions. This is due to the ability of these organelle structures to mimic protein-based organelles such as Virus-Like Particles (VLPs). VLPs have the ability to not only resemble virus protein structures but to encapsulate enzymes while retaining their activity. This research examines the in vitro encapsulation withing the bacteriophage P22 derived VLP, and show that some enzymes may require a delay in encapsulation to allowed proper folding

and maturation before they can be encapsulated inside P22 as fully active enzymes. Exploring …


Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna Aug 2022

Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna

Electronic Theses and Dissertations

The versatility of nuclear magnetic resonance (NMR) spectroscopy is apparent when presented with diverse applications to which it can contribute. Here, NMR is used i) as a screening/ validation tool for a drug discovery program targeting the Phosphatase of Regenerating Liver 3 (PRL3), ii) to characterize the conformational heterogeneity of p53 regulator, Murine Double Minute X (MDMX), and iii) to characterize the solution dynamics of guanosine monophosphate kinase (GMPK). Mounting evidence suggesting roles for PRL3 in oncogenesis and metastasis has catapulted it into prominence as a cancer drug target. Yet, despite significant efforts, there are no PRL3 small molecule inhibitors …


Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni Jun 2022

Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni

Doctoral Dissertations

Caspases are cysteine aspartate proteases involved in various cellular pathways including apoptosis, inflammation, and neurodegeneration. Caspase-9 is classified as an initiator apoptotic caspase that is activated upon intrinsic stress. Caspase-9 is composed of two domains: an N- terminal CARD domain and a catalytic core domain. We have employed hydrogen deuterium exchange mass spectrometry (H/DX-MS) to determine the 1) dynamics of the full-length caspase- 9, 2) dynamic impacts on caspase-9 upon substrate-induced dimerization, and 3) regions involved in the CARD: catalytic core domains interactions. Upon intrinsic stress, caspase-9 activates executioners, procaspase-3 and -7 but not procaspase-6. We have employed site-directed mutagenesis …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …


A New Insight Into Fungal Cell Wall Architecture By Functional Genomics And Solid-State Nmr Along With Recent Advancements In Dynamic Nuclear Polarization For Analyzing Biomolecules, Arnab Chakraborty May 2022

A New Insight Into Fungal Cell Wall Architecture By Functional Genomics And Solid-State Nmr Along With Recent Advancements In Dynamic Nuclear Polarization For Analyzing Biomolecules, Arnab Chakraborty

LSU Master's Theses

This dissertation summarizes the findings related to the way by which supramolecular architecture of fungal cell wall changes with genetic mutation, dispensing genes responsible for biosynthesis of cell wall polysaccharides. This is necessary because without perfect picture of how supramolecular assembly changes with genetic mutation it is hard to assess new anti-fungal targets. Alongside this we have highlighted how recent advancement into Dynamic Nuclear Polarization (DNP) methods improved characterization of biomolecules both in case of labeled and unlabeled samples.

First study utilized Solid-state NMR (SSNMR) which is a non-destructive technique hence enabled us for the first time to deduce how …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair May 2022

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair

Dissertations & Theses (Open Access)

KRAS, a 21 kDa small GTPase protein, functions as a molecular switch playing a key role in regulating cell proliferation. Dysregulation of KRAS signaling by oncogenic mutations leads to uncontrolled cell proliferation, a hallmark of cancer cells. Attempts to therapeutically target oncogenic KRAS have led to limited success resulting in a need to identify new mechanisms to targeting KRAS. The interaction of KRAS with its regulators, effectors, and the membrane present one such avenue. In this study, we investigated how post-translational covalent and environmental modifications could modulate these interactions of KRAS. Using computational molecular dynamics simulations, nuclear magnetic resonance spectroscopy …


Design, Synthesis, And Analysis Of Paired Coiled-Coil Peptidic Molecular Building Blocks Used For Linearly Controlled Self-Assembly Of Α-Helical Coiled-Coil Heterodimer Peptide Pairs, Jason Distefano Apr 2022

Design, Synthesis, And Analysis Of Paired Coiled-Coil Peptidic Molecular Building Blocks Used For Linearly Controlled Self-Assembly Of Α-Helical Coiled-Coil Heterodimer Peptide Pairs, Jason Distefano

Chemistry Theses

Molecular building blocks are fundamental to biological synthesis and processes and have been utilized in advanced materials, drugs and drug delivery systems, and biotechnology. Proteins have been used as molecular building blocks for the construction of complex, well-ordered structures. Coiled-coil protein domains are essential subunits used for the oligomerization of protein complexes, gene expression, and structural elements of biological materials. The synthesis and assembly of proteins utilizing coiled-coil motifs are of great scientific interest due to their potential applications in disease treatment, biomechanical motors, nanoscale delivery systems, etc. However, assembling protein complexes with specific morphology is still challenging because …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …


An In Silico Approach To Investigate The Structural And Biochemical Basis Of The Rna Binding Functions Of Nucleolin, Avdar San Feb 2022

An In Silico Approach To Investigate The Structural And Biochemical Basis Of The Rna Binding Functions Of Nucleolin, Avdar San

Dissertations, Theses, and Capstone Projects

Nucleolin (NCL) is a stress responsive multifunctional nucleolar protein and accounts for 10% of the total nucleolar protein content. NCL belongs to the class of RNA binding proteins (RBPs) that regulate many important cellular processes through their interactions with different RNA molecules. The dysregulation of RBPs and the RNA metabolism pathways they intersect is a known driver of tumorigenesis. NCL regulates ribosome biogenesis, chromatin remodeling, microRNA processing, and gene expression on multiple levels. The RNA-protein interactions of NCL are primarily driven by its four RNA binding domains (RBDs). NCL is known to interact with a growing list of primary-miRNA (pri-miRNA) …


Role Of Metals In Human Immune System: Study Of Metal-Dependent Structural Changes Of S100a12 Protein, Aleksey Aleshintsev Feb 2022

Role Of Metals In Human Immune System: Study Of Metal-Dependent Structural Changes Of S100a12 Protein, Aleksey Aleshintsev

Dissertations, Theses, and Capstone Projects

S100A12 protein belongs to the S100 family of calcium-binding proteins and participates in the innate immune system. Antimicrobial proteins from the S100 family of the proteins (S100A12, S100A8/A9, etc.) are secreted and expressed by neutrophils during microbial infection and perform their antimicrobial activity through metal sequestration. While most S100 proteins function intracellularly, S100A12 is highly expressed and secreted into the extracellular space by neutrophils during infection. Sequestration of Zn2+ by S100A12 is aided by the nanomolar zinc binding affinity of the protein at neutral pH conditions, which is further enhanced upon calcium-binding. The Zn2+ binding scaffold in S100A12 …


Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase Feb 2022

Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase

Dissertations, Theses, and Capstone Projects

Faithful transmission of genetic information is requisite for the propagation of all life. DNA replication in each of the three domains of life requires the separation of double stranded DNA (dsDNA) into single stranded DNA (ssDNA) which then serves as a template for genomic duplication of each original DNA strand. Initiation of replication events occurs by tightly regulated processes during which specialized proteins are loaded at a specific locus within the genome, termed the origin of replication, in preparation of bidirectional replication events. A replicative helicase must be loaded or assembled on both strands of DNA at the origin to …


Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein Feb 2022

Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein

Dissertations, Theses, and Capstone Projects

Voltage gated sodium channels (VGSC) are membrane proteins that serve an important function in the central nervous system (CNS), peripheral nervous system (PNS), and cardiac muscles amongst others. The main function of VGSC is in the propagation of electrical signals by depolarizing excitable cells. Nine mammalian VGSC subtypes have been characterized, NaV1.1 – NaV1.9, that are expressed in a tissue specific manner, each with unique gating properties. Numerous diseases have been linked to defects in VGSC including epilepsy, mental retardation, long QT syndrome, and Brugada disease. Furthermore, these channels are one of the primary targets of …


Ero1Α Promotes Tumorigenesis In Egfr Driven Nsclc, Brennan D. Johnson Jan 2022

Ero1Α Promotes Tumorigenesis In Egfr Driven Nsclc, Brennan D. Johnson

Graduate Theses, Dissertations, and Problem Reports

Non-Small Cell Lung Cancer (NSCLC) is a pulmonary malignancy most commonly associated with smoking, or exposure to asbestos or Radon. Approximately, 1.6 Million deaths occur each year due to lung cancer. Lung Cancer is categorized by two main types, Small Cell Lung Cancer (SCLC) and NSCLC. NSCLC accounts for approximately 85% of all lung cancer cases and is subdivided into three sub-categories: Adenocarcinoma, the most common and leading cause of death in the United States; Squamous Cell Carcinoma (SCC), and Large Cell Carcinoma. Though NSCLC treatment regimens have shown increasing clinical benefit over the last two decades with targeted therapies. …


Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas Jan 2022

Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas

Graduate Theses, Dissertations, and Problem Reports

Virtually all cellular processes are precisely regulated by the proteasome which is the primary enzyme responsible for the degradation of misfolded, damaged, or no longer necessary soluble proteins. To prevent any untimely degradation of these target protein substrates and protect the cell, the proteasome is tightly regulated via adaptor proteins, known as proteasomal regulators. There are many classes of proteasomal regulators each with their own unique structures, functions, and effects on protein degradation through the proteasome. One such class is the 11S family of proteasomal regulators which are also referred to as PA26/28, or REG. The 11S family are ATP-independent …