Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Diseases

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 96

Full-Text Articles in Biochemistry

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson Jan 2023

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus (NNSV) that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. Despite the initial identification of HMPV in 2001, there are currently no FDA approved antivirals or vaccines available. Therefore, understanding the mechanism of HMPV replication is critical for the identification of novel therapeutic targets. A key feature in the replication cycle of HMPV and other NNSVs is the formation of membrane-less, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). Recent work on NNSV IBs suggests they display characteristics of biomolecular condensates formed …


The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith Jan 2023

The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein Tyrosine Phosphatase 4A3 (PTP4A3 or PRL-3) is an oncogenic dual-specificity phosphatase that drives tumor metastasis, promotes cancer cell survival, and is correlated with poor patient prognosis in a variety of solid tumors and leukemias. The mechanisms that drive PRL-3’s oncogenic functions are not well understood, in part due to a lack of research tools available to study this protein. The development of such tools has proven difficult, as the PRL family is ~80% homologous and the PRL catalytic binding pocket is shallow and hydrophobic. Currently available small molecules do not exhibit binding specificity for PRL-3 over PRL family members, …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo Sep 2022

Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo

Dissertations, Theses, and Capstone Projects

Maternal obesity has led to an increase in adverse offspring developmental outcomes and a greater risk for long-term metabolic diseases. Choline, a semi-essential nutrient, can be incorporated into phosphatidylcholine (PC) as well as sphingomyelin (SM) and donate its labile methyl group for the remethylation of homocysteine after choline is oxidized to betaine. Prenatal choline insufficiency has been related to maternal obesity and metabolic diseases, such as metabolic associated fatty liver disease (MAFLD). Choline may interact with maternal obesity to influence the programming offspring.

Chapter 1 presents an introduction of choline and the various clinical outcomes associated with choline supplementation during …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya Jan 2022

Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya

Theses and Dissertations--Chemistry

Antibiotic resistance is one of the major global issues in the field of public health and medicine. Good antibiotic candidates need to be selectively toxic, inhibit cellular target, and effectively penetrate and accumulate in bacterial cells. The last factor is a formidable barrier in the development of antimicrobials effective in Gram-negative bacteria, due to the presence of two layers of cell envelope. The first half of my thesis focuses on understanding the permeation of small molecules through this formidable cell envelope, distribution inside the cell of Gram-negative bacteria, and design of novel methods to make small molecules effectively cross the …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam Dec 2021

Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam

Electronic Theses and Dissertations

Recent studies have associated elevated protein acetylation levels with heart failure in humans. Although mechanisms promoting elevated acetylation levels are not fully known, excess acetyl-CoA may drive enzyme-independent acetylation of cardiac proteins. Accumulation of acetyl-CoA depends on the availability of sufficient CoA, whose production is regulated by pantothenate kinases in the CoA biosynthetic pathway. We show that cardiac proteins are hyperacetylated during heart failure in humans and tested in mice whether limiting CoA abundance would improve ventricular remodeling during pressure overload-induced hypertrophy. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, Pank1 (one of three PANK-encoding …


The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo Aug 2021

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo

Electronic Thesis and Dissertation Repository

Pannexins (PANX1, 2, 3) are a family of channel-forming glycoproteins that mediate intracellular and paracrine signaling. In contrast to PANX2, PANX1 has been extensively investigated in the skin, modulating cell differentiation, wound healing, and melanoma development. PANX1 and PANX2 can co-exist in the same cell and form mixed channels where their glycosylation seems to regulate their intermixing. N-glycosylation and caspase cleavage have been proposed as modulators of the function of PANX1, but their effects on PANX2 are unknown. We explored the PANX2 expression in mouse skin and showed that a Panx2 splice variant (PANX2-202) is continuously expressed throughout aging skin. …


Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino Aug 2021

Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino

MSU Graduate Theses

Recent insights into the pathological role of Nucleotide P2Y2 receptor suggest P2Y2R involvement in high fat diet-induced obesity and potentiates insulin resistance. However, these recent insights do not demonstrate how P2Y2R modulates glucose homeostasis under physiological conditions. Further, it remains unknown how sex biological factors influence P2Y2R receptor signaling in the regulation of glucose homeostasis. The research objective for the present study is to elucidate the novel roles of P2Y2 in fasting blood glucose and glucose tolerance (basal insulin sensitivity) under resting conditions in males and females. We expected that under physiological …


Mucin And Splice Variant Profiles Of Pancreatic Adenocarcinoma Predict Patient Survival And Subtyping, Christopher M. Thompson May 2021

Mucin And Splice Variant Profiles Of Pancreatic Adenocarcinoma Predict Patient Survival And Subtyping, Christopher M. Thompson

Theses & Dissertations

PDAC is a pancreatic epithelial malignancy and demonstrates aggressive progression and bleak patient prognosis. Despite decades of research, the evolution of novel diagnostics and intervention modalities for PDAC is stagnant. This dissertation explores the characteristic aberrant and elevated expression of mucins in PDAC. Beginning with the hypothesis that mucins are associated with disease aggressiveness, analysis of PDAC patient survival in TCGA revealed no associations between single mucin expression and patient survival. This led to the underlying issue of PDAC tumor cellularity since this disease demonstrates variability in the proportion of cancer cells within the tumor. Tumor purity assessed with the …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Sars-Cov-2: An Investigation On Mutagenicity And Its Effects On Infectivity And Mortality, Tyler Elliott Silverwood Jan 2021

Sars-Cov-2: An Investigation On Mutagenicity And Its Effects On Infectivity And Mortality, Tyler Elliott Silverwood

Honors Theses and Capstones

SARS-CoV-2, the etiological agent of the COVID-19 pandemic, has rapidly become a worldwide public health concern. Classified as a betacoronavirus, it is the third human coronavirus (HCoV) to emerge in the 21st century that causes severe disease, alongside SARS-CoV and MERS-CoV. The genome consists of open reading frames encoding accessory proteins and four structural proteins, including the spike protein which is a key determinant of host cell tropism. Mutations within the genome, particularly the spike gene, have been linked in-vitro to increased binding affinity to the human receptor angiotensin-converting enzyme 2 (hACE2), increased fitness in human hosts, and immune evasion. …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest Jan 2021

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest

Graduate Theses, Dissertations, and Problem Reports

Photoreceptors are specialized neuroepithelial cells which are optimized for efficient capture of light and initiation of visual transduction. These cells have several compartments which are very important for proper visual function and segregation of cellular processes, including the outer segment (OS), inner segment (IS), nucleus, and synapse. The IS houses all of the cellular organelles and biosynthetic molecular machinery the cell requires and is the site of protein synthesis. The light-sensing OS is a highly modified, primary cilium, which contains many stacks of double membranous discs which house proteins required for formation and maintenance of OS structure, as well as …


Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant Jan 2021

Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant

Honors Theses

Laromustine is an experimental chemotherapeutic sulfonyl hydrazine prodrug shown in clinical trials to be effective against acute myeloid leukemia. The mechanism of action of laromustine involves interstrand crosslinking, via chloroethylation, and enzyme inhibition, caused by carbamoylation. The work described herein aims to investigate whether inhibition of the replication-dependent interstrand crosslink repair Fanconi Anemia pathway further sensitizes cells to laromustine. By measuring metabolic activity immediately after drug exposure, we find laromustine to be equally as cytotoxic towards Fanconi Anemia deficient and wild type cells. However, through clonogenic assays we show Fanconi Anemia mutations sensitize cells to laromustine’s anti-proliferative effect. Furthermore, we …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver Dec 2020

Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver

Pence-Boyce STEM Student Scholarship

Atherosclerosis is a cardiovascular disease that is characterized by the hardening of arteries through the formation of cholesterol plaques. Cyclodextrins could potentially treat atherosclerosis by shrinking plaques. These cyclic oligosaccharides can make complexes with cholesterol but have also shown toxic side effects. This study looked for potential negative effects of cyclodextrins and cholesterol on gut bacteria. It was hypothesized that Bacteroides vulgatus will have decreased growth when grown in broth with cholesterol. In contrast, Clostridium bolteae will have decreased growth when grown in broth with cyclodextrins. Due to the fact that these bacteria are anaerobic, Clostridium bolteae and Bacteroides vulgatus …


Nutrient Sensing Pathways Mediating Igfbp1 Phosphorylation In Fgr, Shapnil Bhuiyan Jul 2020

Nutrient Sensing Pathways Mediating Igfbp1 Phosphorylation In Fgr, Shapnil Bhuiyan

Electronic Thesis and Dissertation Repository

Impairment of fetal oxygen levels and nutrient delivery contributes to fetal growth restriction (FGR), which affects 20% of pregnancies. Such cellular stress induces hepatic Insulin-like Growth Factor Binding Protein 1 (IGFBP1) phosphorylation, which sequesters Insulin-like Growth Factor 1 (IGF-I) and markedly reduces fetal growth signaling. IGFBP1 hyperphosphoryaltion in hypoxia is mediated through the mTOR signaling pathway and through the Amino Acid Response (AAR) pathway during amino acid deprivation. Hypoxia stimulates upstream mTORC1 regulators, AMPK and REDD1 which are well-established upstream regulators of one of the two mTOR complexes, mTORC1. The molecular mechanisms by which upstream mTORC1-driven processes regulate IGFBP1 phosphorylation …


Optimization Of Methods For Cross-Species Infection Of Cell Cultures With Wolbachia, Sarah J. Lane Apr 2020

Optimization Of Methods For Cross-Species Infection Of Cell Cultures With Wolbachia, Sarah J. Lane

Honors Thesis

The common intracellular endosymbiont genus of bacteria called Wolbachia is of interest due to the promise it shows for playing a role in disease control. Wolbachia have a number of widely variable effects on its many species of host insects. In combination with these roles, Wolbachia largely affects reproduction and development of its host species. It can lead to feminization and cytoplasmic incompatibility (Werren et al. 2008). Furthermore, this species is vertically transmitted which means that it passes from mother to offspring (Caragata et al., 2016). In combination with its effects on reproduction, which can allow Wolbachia to propagate through …


Synthesis And Preliminary Ex Vivo Testing Of Sirna Targeting Tcrb: A Proposed Therapy For The Treatment Of Autoimmunity, Nicholas J. Magazine Jan 2020

Synthesis And Preliminary Ex Vivo Testing Of Sirna Targeting Tcrb: A Proposed Therapy For The Treatment Of Autoimmunity, Nicholas J. Magazine

LSU Doctoral Dissertations

Abstract

Background:

As of 2018, the United States National Institutes of Health estimate that over half a billion people worldwide are affected by autoimmune disorders. Though these conditions are prevalent, treatment options remain relatively poor, relying primarily on various forms of immunosuppression which carry potentially severe side effects and often lose effectiveness overtime. Given this, new forms of therapy are needed. We propose small-interfering RNA (siRNA) for hypervariable regions of the T-cell receptor β-chain gene (TCRb) as a highly targeted, novel means of therapy for the treatment of autoimmune disorders.

Objectives:

To develop methods to produce siRNA targeting …


Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan Jan 2020

Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan

Graduate Theses, Dissertations, and Problem Reports

Photoreceptor neurons are modified primary cilia with an extended ciliary compartment known as the outer segment (OS). The mechanisms behind the elaboration of photoreceptor cilia, OS morphogenesis, and maintenance remain poorly understood. In this work, we focused on dissecting the role of two ciliary proteins, the small GTPase ADP-ribosylation factor-like GTPase 13B (ARL13B) and Bardet-Biedl Syndrome-8 (BBS8) in the context of photoreceptor biology. Both BBS8 and ARL13B are linked to defects in ciliogenesis (cilia development) and Retinitis Pigmentosa (vision loss). ARL13B is implicated in regulating ciliary length, and BBS8 is part of the Bardet-Biedl Syndrome complex (BBSome); the BBSome is …


Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer Jan 2020

Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer

CMC Senior Theses

Defensive symbioses, in which microbes provide molecular defenses for an animal host, hold great potential as untapped sources of therapeutically useful antibiotics. Fungus-growing ants use antifungal defenses from bacterial symbionts to suppress pathogenic fungi in their nests. Preliminary chemical investigations of symbiotic bacteria from this large family of ants have uncovered novel antifungal molecules with therapeutic potential, such as dentigerumycin and selvamicin.

In this study, the bacterial symbionts of North American Trachymyrmex fungus-growing ants are investigated for antifungal molecules. Plate-based bioassays using ecologically-relevant fungal pathogens confirmed that these bacteria have antifungal activity. In order to purify and identify the antifungal …


Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng Dec 2019

Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng

Theses & Dissertations

Connexins are integral membrane proteins that oligomerize to form gap junction channels. Ions and small molecules diffuse intercellularly through these channels, allowing individual cellular events to synchronize into the functional response of an entire organ. Gap junction channels composed of Connexin43 (Cx43) mediate electrical coupling and impulse propagation in the normal working myocardium. In the failing heart, Cx43 remodeling (decreased expression, altered phosphorylation state, loss at intercalated discs, and increased presence at lateral membranes) contributes to rhythm disturbances and contractile dysfunction. While there is considerable information regarding key interactions of Cx43 in the regulation of gap junction channels, unfortunately, the …


Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng Dec 2019

Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng

Theses & Dissertations

Type 1 diabetes is one of the most challenging chronic autoimmune diseases. The destruction and dysfunction of insulin-secreting β cells are the results of inflammatory infiltration and the synergistic effect of multiple immune cells. The aim of this dissertation is to develop novel and reliable therapeutic approaches to advance the treatment of T1D: including chemical modification of a broad-spectrum immunosuppressant, co-application of small molecule based immune intervention and siRNA based β cell preservative therapy, and administration of a PI3K-δ/γ dual inhibitor to specifically target immune cells, utilizing synthetic polymeric micelles or natural produced multi-functional exosomes derived from human bone marrow …


Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli Aug 2019

Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli

Electronic Thesis and Dissertation Repository

Elevated plasma lipoprotein(a) (Lp(a)) is the most prevalent heritable risk factor in the development of cardiovascular disease. The apolipoprotein(a) (apo(a)) component of Lp(a) is strongly implicated in the pathogenicity of Lp(a). It is hypothesized that the inflammatory potential of Lp(a)/apo(a) is mediated by the lysine binding ability of the apo(a) kringle IV10 (KIV10) domain, along with its covalently bound oxidized phospholipid (oxPL). Using targeted mutagenesis, two novel null alleles for the LPA gene that generate non-secretable apo(a) species have been identified, resulting from amino acid substitutions in the KIV10 domain. A potential mechanism by which KIV10 oxPL modification is enriched …


Microvascular Stenosis In Critical Limb Ischemia: Role Of Partial Endothelial To Mesenchymal Transition, Jacqueline M. Chevalier Jul 2019

Microvascular Stenosis In Critical Limb Ischemia: Role Of Partial Endothelial To Mesenchymal Transition, Jacqueline M. Chevalier

Electronic Thesis and Dissertation Repository

Critical limb ischemia (CLI) is a widespread and debilitating manifestation of atherosclerosis. Unfortunately, revascularization strategies are often precluded or unsuccessful, resulting in amputation. A major reason for treatment failure is likely co-existing abnormalities in ­­the microvasculature. However, the specific microvascular defects present in end-stage PAD in humans remain unknown.

The purpose of this study was to delineate abnormalities in the microvascular wall in the critically ischemic skeletal muscle of patients with CLI.

To elucidate the microvascular landscape in CLI, we studied human tibialis anterior and gastrocnemius muscles harvested from below-knee amputations of 10 individuals with CLI. Control muscles are from …


Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom Jun 2019

Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom

Electronic Theses and Dissertations

Rotavirus (RV) can cause severe and deadly gastroenteritis in young children, infants, and immunocompromised individuals. Previous studies have shown that arachidin 3 (A3) inhibits RV replication, and that RV replication is dependent on the presence of lipids. This study investigated the alteration of lipid metabolism by A3 in RV infected HT29.f8 cells. A decrease in the RV regulation of lipid biosynthesis genes was observed with the addition of A3 using qRT-PCR. Also, immunofluorescent and histochemical staining for neutral fats, a major component of cellular lipid droplets, revealed an increased accumulation with both RV and RV+A3 when compared to no virus …


Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers Apr 2019

Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers

Senior Theses

Iron dysregulation has been linked to a variety of human diseases, such as anemia, Friedreich’s ataxia, X-linked sideroblastic anemia, sideroblastic-like microcytic anemia, and myopathy. Thus, it is vitally important to understand the mechanisms for regulating intracellular iron. Here, we use fluorescence microscopy techniques in live cells to study interactions of the yeast proteins Grx3/4, Aft1/2, and Bol2, which have been shown to be involved in turning off iron import when the cell has adequate iron. Modified versions of genes encoding these proteins have been incorporated into several yeast backgrounds to use fluorescence to monitor interactions under varying iron levels.