Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Book Gallery

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 56

Full-Text Articles in Biochemistry

Characterization Of Cl-Par-4: Wt Vs. Mutant, Samjhana Pandey, Krishna K. Raut, Andrea M. Clark, Antoine Baudin, Lamya Djemri, David S. Libich, Steven M. Pascal Jan 2023

Characterization Of Cl-Par-4: Wt Vs. Mutant, Samjhana Pandey, Krishna K. Raut, Andrea M. Clark, Antoine Baudin, Lamya Djemri, David S. Libich, Steven M. Pascal

The Graduate School Posters

Intrinsically disordered proteins (IDPs) play important roles in regulation of cell signaling pathways as well as cellular processes. Dysregulation of these proteins is associated with several human diseases. Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is categorized as an intrinsically disordered protein and downregulation of this protein has been reported in myriad of cancers including glioma, breast cancers, and prostate cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) plays an active role in tumor suppression by inhibiting several cell survival pathways.

Here, we employed site-directed mutagenesis to introduce a point mutation in the cl-Par-4 wildtype (WT) to generate the …


Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell Jan 2023

Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell

The Graduate School Posters

Staphylococcus aureus (S. aureus) is a biofilm-forming pathogen. S. aureus treatment is marked by the development of antibiotic resistance. The public health impact has increased since the emergence of methicillin-resistant S. aureus (MRSA), which has started to show intermediate resistance to vancomycin in MRSA. Nano-second pulse electric fields (nsPEFs) are low-energy and high-power electric pulses, which have been suggested to sensitize pathogens to antibiotics by creating transient pores in the cell membrane. Our combinatorial treatment includes nsPEF pre-treatment and vancomycin post-treatment of MRSA cells. Our results show that MRSA log phase cells had the highest susceptibility to vancomycin. …


Gestational Vulnerability To Ozone Air Pollution - A Placental Story, Vishnupriya Alavala, Sarah Brent, Russell Hunter, Matthew J. Campen, Andrew Ottens Jan 2023

Gestational Vulnerability To Ozone Air Pollution - A Placental Story, Vishnupriya Alavala, Sarah Brent, Russell Hunter, Matthew J. Campen, Andrew Ottens

Undergraduate Research Posters

About 99% of the global population resides in areas with air pollution surpassing World Health Organization standards. Air pollution is associated with adverse neonatal health outcomes such as low fetal birth weight and an increased risk for maternal pre-eclampsia. A particularly reactive air pollutant is ozone, which forms reactive oxygen species that induce cellular damage. Research exists on the dispersion of reactive oxygen species through the bloodstream leading to fetal vulnerability during pregnancy, specifically via the placenta. Yet, placental and fetal development is a temporal process with varied susceptibility to negative gestational outcomes.

To addressing this gap, our laboratory utilized …


Par-4: An Attractive Target For Cancer Therapy, Krishna K. Raut, Antoine Baudin, David S. Libich, Lijun Liu, Scott Lovell, Steven M. Pascal Jan 2023

Par-4: An Attractive Target For Cancer Therapy, Krishna K. Raut, Antoine Baudin, David S. Libich, Lijun Liu, Scott Lovell, Steven M. Pascal

College of Sciences Posters

Lack of early diagnosis, cancer recurrence, metastasis, and adverse side effects are some of the major problems in the treatment of cancers. Par-4, a tumor suppressor protein, is an attractive target for cancer therapy as it selectively kills cancer cells. Cl-Par-4 is the active fragment of Par-4 that enters the nucleus and selectively induces apoptosis in cancer cells. It has also been reported that Par-4 increases the susceptibility of cancer cells to chemotherapy and reverses cancer recurrence. Further, Par-4 has been shown to play a dual role: inhibition of EMT (Epithelial-mesenchymal transition) as well as assistance in the reverse process, …


Assessing Undergraduate Expression Of Biochemical Mechanisms, Lauren Richardson Sep 2022

Assessing Undergraduate Expression Of Biochemical Mechanisms, Lauren Richardson

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Methods For Bioconjugation Of Biochemical Sensors Based On Metallic Nanoparticles, Jacob Rolin Sep 2022

Methods For Bioconjugation Of Biochemical Sensors Based On Metallic Nanoparticles, Jacob Rolin

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Assessing Biochemistry Students’ Use Of Metabolic Pathway Entities, Nina Fortier Sep 2022

Assessing Biochemistry Students’ Use Of Metabolic Pathway Entities, Nina Fortier

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill May 2022

Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill

Open Educational Resources

A wonderful blend of physiology, nutrition, biochemistry, genetics, biology, evolution, chemistry--what we all need to know as informed citizens. A basic knowledge of the life sciences and how our bodies work--to promote our own good health, especially as we're bombarded with misleading advertisements, soundbites, and the like. DNA fingerprinting, calorie requirements, dietary advice, genetic engineering (including gene editing with CRISPR cas9)--all in an easy-to understand book.


Annual Faculty Research Symposium 2022, Oakwood University Apr 2022

Annual Faculty Research Symposium 2022, Oakwood University

Proceedings

No abstract provided.


A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal Apr 2022

A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. Down-regulation of this protein has been reported in a myriad of cancers. Conversely, up-regulation of Par-4 is found to be associated with several neurodegenerative disorders. Par-4 is unique in the sense it can selectively induce apoptosis in cancer cells. For this, caspase-dependent intracellular cleavage of Par-4 is essential to produce the functionally active fragment, cl-Par-4 (caspase-cleaved Par-4). The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells.

Our laboratory is interested in determining the structure of cl-Par-4 and understanding it’s interaction with various …


Investigation Of Magnesium Cation-Proton Exchange With Transmembrane Electrostatically Localized Protons (Telp) At A Liquid-Membrane Interface: Fundamental To Bioenergetics, Gyanendra Kharel, Andrew J. Evans, Christopher M. Russo, Michael Eason, James W. Lee Apr 2022

Investigation Of Magnesium Cation-Proton Exchange With Transmembrane Electrostatically Localized Protons (Telp) At A Liquid-Membrane Interface: Fundamental To Bioenergetics, Gyanendra Kharel, Andrew J. Evans, Christopher M. Russo, Michael Eason, James W. Lee

College of Sciences Posters

The Lee transmembrane electrostatic proton localization (TELP) theory is a revolutionary scientific theory that has successfully explained decades long-standing quandary in the field of bioenergetics in regards to ATP synthesis in biological systems, specifically alkalophilic bacteria. This study provides experimental support for the TELP theory by further demonstrating evidence of a localized proton layer existing at the liquid-membrane interface in a simulated biological membrane apparatus. Whilst monovalent cations have been studied extensively, divalent cation exchange has not been studied experimentally.

A previous study determined equilibrium constant for Na+ and K+ to exchange with localized H+ layer to …


The Effects Of Neuronal Growth Factors On Lps-Activated Schwann Cells, Caitlyn E. Henry, Peyton Kimmel, Angela Asirvatham Ph.D. Jan 2022

The Effects Of Neuronal Growth Factors On Lps-Activated Schwann Cells, Caitlyn E. Henry, Peyton Kimmel, Angela Asirvatham Ph.D.

Student Research Poster Presentations 2022

Schwann cells (SCs) are the principal support cells of neurons in the peripheral nervous system, that both myelinate axons for the rapid conduction of electrical impulses as well as assist in axonal repair during nerve injury. During nerve injury, SCs secrete tumor necrosis factor alpha (TNF-α)1,5,6 and other proinflammatory mediators1,6, attracting macrophages to the site of injury to induce inflammation and clear myelin debris.1,6 Once the debris is cleared, the neuron stimulates SC proliferation by secreting neuronal mitogens, such as heregulin3,4, and an unknown factor that activates the cAMP pathway3, an important …


Simulation Of An Inflammatory Model Using Schwann Cells, Caitlyn Henry, Peyton Kimmel, Angela Asirvatham Jan 2022

Simulation Of An Inflammatory Model Using Schwann Cells, Caitlyn Henry, Peyton Kimmel, Angela Asirvatham

Student Research Poster Presentations 2022

During peripheral nerve injury, the myelin surrounding the neuronal axons is damaged, initiating an inflammatory response to remove myelin debris. Once myelin debris is cleared, Schwann cells acquire a proliferating phenotype which allows them to grow and divide so that remyelination can occur. The neuron stimulates Schwann cell division by secreting growth factors, like heregulin, and an unknown growth factor that activates the cAMP pathway. Although the role of cAMP in axonal regeneration is well-known, not much has been explored about its function in Schwann cells during nerve injury and inflammation. To simulate an inflammatory environment, the S16 Schwann cell …


Characterization Of The Atpase Activity Of Casding, Christian Cahoon Dec 2021

Characterization Of The Atpase Activity Of Casding, Christian Cahoon

Fall Student Research Symposium 2021

The battle between bacteria and phage has been ongoing for eons. This battle has generated the evolutionary pressure necessary for the development of microbial immune systems. Characterization of these systems has led to the discovery of molecular tools such CRISPR-Cas systems. This system uses a genetic memory of past viral infections coupled with associated proteins to form ribonucleoprotein complexes which seek out and destroy foreign genetic elements. These systems have been repurposed by scientists to create powerful gene editing tools such as Cas9. With such powerful molecular tools being discovered, we have pursued the characterization of a relatively unknown system, …


Determining The Nucleic Acid Binding Affinities Of Crispr-Associated Ding (Casding), Matt Armbrust Dec 2021

Determining The Nucleic Acid Binding Affinities Of Crispr-Associated Ding (Casding), Matt Armbrust

Fall Student Research Symposium 2021

CRISPR-Cas systems are adaptive prokaryotic immune systems that enable host cells to defend against attack from foreign nucleic acids such as phage infections or plasmids. CRISPR-Cas systems are diverse and encompass 2 classes, 6 types, and 33 subtypes. The Type IV-A CRISPR-Cas system from Pseudomonas aeruginosa strain 83 is composed of five different genes (csf1, csf2, csf3, cas6, and dinG). Type IV-A systems are poorly understood, and currently there is little research detailing their biological and biochemical mechanism of immunity. CasDinG, an ancillary protein within the Type IV-A system, is required for an immune response in vivo. However, the role …


Discovering Virally Encoded Proteins That Block Type Iv Crispr Immune Systems, Andrew Williams Dec 2021

Discovering Virally Encoded Proteins That Block Type Iv Crispr Immune Systems, Andrew Williams

Fall Student Research Symposium 2021

Bacteria and the viruses that infect them have been at war from the beginnings of life until today. Due to selective pressure from viral infection, bacteria have evolved various biological defense systems, including CRISPR-Cas systems that use a genetic memory of previous viral encounters to protect against future invasions. However, recently it has been shown that viruses have evolved counter-strategies to evade CRISPR systems. Virally encoded proteins called anti-CRISPRs use a variety of mechanisms to block the activity of CRISPR immune systems in order to infect bacterial cells. The Jackson lab at USU recently showed that a Type IV-A CRISPR-Cas …


Characterizing The Mechanisms Of C. Elegans Prmt1 Temperature Dependence, Arianna Towne Dec 2021

Characterizing The Mechanisms Of C. Elegans Prmt1 Temperature Dependence, Arianna Towne

Fall Student Research Symposium 2021

Over time, cellular enzymes evolve through amino acid mutations which allow them to remain functional at temperatures specific to the host organism. This activity may be partially or completely lost when enzymes are removed from their optimal temperature range, as is observed for the C. elegans protein arginine methyltransferase 1 (cPRMT1). This construct demonstrates maximum enzymatic activity at the C. elegans optimum of 20°C, but no activity at 37°C where activity for mammalian PRMT1 variants is observed. Given dysregulation of PRMT1 has been linked to various disease states, we are interested in exploiting the biophysical mechanisms of cPRMT1 temperature dependence …


Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …


The Inhibition Of Growth Of S. Cerevisiae, U. Maydis, And M. Lychinidis-Dioicae By Apiaecea Plant Extracts, Jackson M Hoffman, Jared Scott, David Schultz Phd Jan 2021

The Inhibition Of Growth Of S. Cerevisiae, U. Maydis, And M. Lychinidis-Dioicae By Apiaecea Plant Extracts, Jackson M Hoffman, Jared Scott, David Schultz Phd

Undergraduate Arts and Research Showcase

The Apiaceae family of plants contains over 3,500 species, many of which are used as food crops: vegetables (carrot, parsnip, celery, etc.), herbs (cilantro, fennel, dill, etc.), and spices (cumin, anise, caraway, etc.). Many spices have been shown to exhibit antimicrobial properties against both bacteria and fungi. We set out to determine if the Apiaceae spice extracts currently used in our lab for anticancer studies exhibit any antimicrobial properties. Ethanolic extracts were made from several Apiaceae seeds: Apium graveolens (celery), Cuminum cyminum (cumin), Anethum graveolens(dill), Foeniculum vulgare (fennel), Coriandrum satvium (coriander), Pimpinella ansium (anise), Trachyspermum ammi (ajwain), Carum carvi …


Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher Jan 2021

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the …


The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham Jan 2021

The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham

Student Research Poster Presentations 2021

Schwann cells are a vital component of the Peripheral Nervous System and aid in the repair of axons following injury. The regulation of Schwann cell growth in vitro is facilitated by heregulin, a neuron-secreted growth factor, and an unknown mitogen that activates the cyclic adenosine monophosphate (cAMP) pathway. The abundance of intracellular cAMP is regulated by a family of enzymes called phosphodiesterases (PDEs). PDE inhibitors such as rolipram have therapeutic potential in various disorders and function by increasing the levels of intracellular cAMP. A-Kinase anchoring proteins (AKAPs), a family of scaffolding proteins that belong to the cAMP/Protein Kinase A (PKA) …


Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia Apr 2020

Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia

Symposium of Student Research, Scholarship, and Creative Activities Materials

About 5.4 million basal and squamous cell skin cancers are diagnosed every year in the US. ΔNp63a, a member of the p53 transcription factor family, is overexpressed in non-melanoma skin cancer and regulates cell survival, migration and invasion. TIP60 is histone acetyltransferase (HAT) which mediates cellular processes such as transcription and the DNA damage response (DDR). Previous studies in our lab have shown that overexpression of TIP60 induces ΔNp63a protein stabilization in a catalytic-dependent manner. Since ΔNp63a is known to transcriptionally regulate several DDR genes and promote cisplatin resistance, its stabilization by TIP60 may contribute to the failure of platinum-based …


Elements Of An Effectiveresearch Presentation, Rachel Willand Charnley Aug 2019

Elements Of An Effectiveresearch Presentation, Rachel Willand Charnley

Chemistry and Biochemistry Faculty Presentations and Other Materials

No abstract provided.


Living, Learning, And Leading At Linfield College, Kelsey Bruce Mar 2019

Living, Learning, And Leading At Linfield College, Kelsey Bruce

Student Engagement Posters

Kelsey Bruce discusses student engagement at Linfield College with regard to leadership through student/faculty collaborative research with Dr. Megan Bestwick, speech and debate, and the Linfield Residence Life team.


Carbohydrate Extraction From The Chorella Vulgaris Microalgae Strain, William Hammann, Wayne Seames, Andrew Ross Dec 2018

Carbohydrate Extraction From The Chorella Vulgaris Microalgae Strain, William Hammann, Wayne Seames, Andrew Ross

Essential Studies UNDergraduate Showcase

The cultivation and exploitation of microalgae biomass as a source of renewable fuels and other chemicals has been an active area of research due to microalgae’s high productivity and the relatively high concentrations of valuable intracellular components, like lipids (fatty acid-based oils), proteins, and polysaccharides. Commercialization of this technology will help mitigate global climate change by reducing fossil-derived products by producing analog renewable fuels and chemicals. Traditionally, the main focus of microalgae-based fuels/chemicals research and development has been on the lipids that many strains generate, but current research shows that solely recovering the oils may not be cost competitive with …


Chemical Analysis Of Aerosol Particle Surfaces, Hillary Woolf Dec 2018

Chemical Analysis Of Aerosol Particle Surfaces, Hillary Woolf

Fall Student Research Symposium 2018

Aerosol particles are thought to impact climate properties. The ability to probe aerosols to understand their chemical properties has been difficult due to a lack of appropriate analytical techniques. Here we present interface-specific SHS techniques to allow for in situ analysis of aerosol particles. Transportation of aerosols from their collection site to the laboratory disturbs their chemical and physical properties thus making it difficult to take accurate measurements of aerosol particles. We show that using a CCD detector is a more effective option for producing more sensitive results and can greatly reduce sampling time and could possibly detect measurements from …


Progress Toward Synthetically Simplified Natural Anticancer Peptide, David W. Kastner, Steven L. Castle Mar 2018

Progress Toward Synthetically Simplified Natural Anticancer Peptide, David W. Kastner, Steven L. Castle

Library/Life Sciences Undergraduate Poster Competition 2018

Yaku’amide A was isolated in late 2010 from the deep-sea sponge Ceratopsion sp. and exhibits potent inhibitory activity against 39 human cancer cell lines via a potentially novel mode of action. However, the total synthesis requires many steps and produces low yields. In this study, we determined two simpler YA analogues that may retain its anticancer properties and can be synthesized in larger quantities. The analogues replace dehydroisoleucine with either dehydroethylnorvaline or dehydrovaline.


Audiobook Of A World From Dust, Ben Mcfarland Jan 2018

Audiobook Of A World From Dust, Ben Mcfarland

Faculty Open Access Books

A World From Dust is a popular science book about the chemical sequence behind the evolution of creation.

It’s about how geology, biology, and chemistry worked together over billions of years, providing a hidden order under the random flow of genes and lava and water.

It’s about the chemical job that each element takes up in life, and how that job is predictable from its place on the periodic table.

It can be told as the story of many elements: how iron and sulfur gave a spark of life; how manganese was a key for oxygen; and how copper and …


Biochemistry, Chavonda Mills, Shaundra Walker Jul 2017

Biochemistry, Chavonda Mills, Shaundra Walker

Chemistry Grants Collections

This Grants Collection for Biochemistry was created under a Round Five ALG Textbook Transformation Grant.

Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process.

Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials:

  • Linked Syllabus
  • Initial Proposal
  • Final Report


Characterization Of A Putative Hemolysin Expressed By Sneathia Amnii, A Preterm Birth-Associated Pathogen, Lizette Carrasco, Kimberly Jefferson Jan 2017

Characterization Of A Putative Hemolysin Expressed By Sneathia Amnii, A Preterm Birth-Associated Pathogen, Lizette Carrasco, Kimberly Jefferson

Undergraduate Research Posters

The gram-negative bacteria Sneathia amnii is a poorly-characterized commensal of the female urogenital tract frequently associated with adverse clinical outcomes such as bacterial vaginosis (BV), amnionitis, and preterm labor. To investigate its potential role in virulence, we sought to identify and characterize virulence determinants produced by S. amnii in an effort to better understand the pathogenesis of infectious preterm birth. Through sequencing of the Sn35 genome (type strain of S. amnii), we identified two genes with amino acid sequence similarity and structural similarity to the filamentous hemagglutinin (FHA) protein of Bordetella pertussis and its Type Vb transporter. Because S. amnii …