Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Theses/Dissertations

2020

Covalent Labeling

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati Jul 2020

Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati

Doctoral Dissertations

Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein’s structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for …


Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush May 2020

Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush

Honors Theses

Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry is a powerful technique for the analysis of protein topography as it generates covalent mass labels that can survive downstream sample handling, and it is sensitive to the solvent accessibility of amino acid sidechains. Of the multiple platforms for HRPF, fast photochemical oxidation of proteins (FPOP) utilizes a pulsed 248 nm KrF excimer laser to label proteins by photolyzing hydrogen peroxide. FPOP is the most widely used HRPF platform because it labels proteins faster than unfolding can occur. Variations in FPOP sample conditions make it difficult to compare results between experiments …