Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 232

Full-Text Articles in Life Sciences

The Effects Of Decellularized Adipose Tissue Constructs On Mesenchymal Stromal/Stem Cell Phenotype And Pro-Angiogenic Secretory Function., Yehia Moharrem Jun 2021

The Effects Of Decellularized Adipose Tissue Constructs On Mesenchymal Stromal/Stem Cell Phenotype And Pro-Angiogenic Secretory Function., Yehia Moharrem

Electronic Thesis and Dissertation Repository

Due to limited treatment options for critical limb ischemia (CLI), cellular-based therapies have been investigated to induce blood vessel regeneration. Bone marrow-mesenchymal stromal/stem cells (BM-MSC) have shown pre-clinical success in animal models of CLI as they possess pro-angiogenic and immunomodulatory functions. However, clinical translation has been hindered by inadequate expansion and delivery strategies. This project aimed to characterize the phenotype and pro-angiogenic secretory function of BM-MSC on decellularized adipose tissue (DAT) bioscaffolds as expansion platforms. Compared to cells grown on tissue-culture plastic, DAT substrates supported BM-MSC growth, regenerative marker expression, and pro-angiogenic secretory function. Conditioned media generated by BM-MSC cultured …


Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf Jun 2021

Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf

Electronic Thesis and Dissertation Repository

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of a pluripotency continuum, respectively referred to as naïve and primed pluripotent states. A third, recently discovered intermediate state has been described as the ‘formative state’. Metabolism has been traditionally regarded as a by-product of cell fate; however, recent evidence now supports metabolism as promoting stem cell fate. Pyruvate kinase muscle isoforms 1 and 2 (PKM1 and PKM2) catalyze the final, rate limiting step of glycolysis generating adenosine triphosphate (ATP) and pyruvate; however, the precise role(s) of these isozymes in naïve, formative, and primed pluripotency is …


Characterizing The Effects Of Pyrroloquinoline Quinone (Pqq) Supplementation On Skeletal Muscle Mitochondrial Function And Myogenesis During Oxidative Stress And Iugr., Allyson J. Wood May 2021

Characterizing The Effects Of Pyrroloquinoline Quinone (Pqq) Supplementation On Skeletal Muscle Mitochondrial Function And Myogenesis During Oxidative Stress And Iugr., Allyson J. Wood

Electronic Thesis and Dissertation Repository

Intrauterine growth restriction (IUGR) affects 10-15% of births and is associated with placental insufficiency (PI), resulting in fetal oxidative stress (OS). This OS is a factor in the predisposition to postnatal noncommunicable disease (NCD) of which muscle mitochondrial dysfunctional is a key aspect. Pyrroloquinoline quinone (PQQ), an antioxidant-like compound, is capable of OS reduction and promotes mitochondrial function, though limited research has focused on its effects in in utero skeletal muscle. This study sought to investigate the impact of in vitro H2O2, a model of OS, and an in vivo model of OS associated IUGR, with …


Nrf2 Regulation By Hsp90, Oxidation, And In Breast Cancer, Vy Ngo Mar 2021

Nrf2 Regulation By Hsp90, Oxidation, And In Breast Cancer, Vy Ngo

Electronic Thesis and Dissertation Repository

To cope with the dynamic range of stressful stimuli that a cell experiences within its lifetime, a host of adaptive cell survival and cell stress response pathways have evolved. The antioxidant and heat shock responses are two key cell stress response pathways primarily involved in the detoxification and elimination of oxidative stress and the maintenance of protein integrity, respectively. Traditionally, these responses are regarded and studied as two independent pathways. In this exploratory work, we hypothesize that oxidative damage to Nrf2 and Keap1 and their interactions with Hsp90 alter their function within the cellular antioxidant stress response. By establishing and …


Functional Role Of Dream And Dyrk1a In High-Grade Serous Ovarian Cancer Cell Dormancy, Pirunthan Perampalam Mar 2021

Functional Role Of Dream And Dyrk1a In High-Grade Serous Ovarian Cancer Cell Dormancy, Pirunthan Perampalam

Electronic Thesis and Dissertation Repository

High-grade serous ovarian cancer (HGSOC) is the most common form of ovarian cancer. The majority of women are disproportionately diagnosed at an advanced stage (stage III-IV) of the disease when tumours have progressed beyond the ovaries or fallopian tubes and into the peritoneal cavity. Survival rates at late-stage are as low as 25% and chemoresistant disease recurrence is common, affecting up to 90% of patients. Multicellular clusters called spheroids contribute to dormancy, chemoresistance, and metastases and are a major challenge to treatment of HGSOC. Spheroid cells undergo reversible quiescence to evade chemotherapy in a process mediated by the mammalian DREAM …


Metabolic Reprogramming By Dna Tumour Viruses, Martin Prusinkiewicz Feb 2021

Metabolic Reprogramming By Dna Tumour Viruses, Martin Prusinkiewicz

Electronic Thesis and Dissertation Repository

Viruses are the etiological agents of approximately 12% of human cancers. However, only a subset of viral infections eventually progress to cancer. As obligate intracellular parasites, viruses create a host-cell environment that is amenable to virus replication. These changes to host-cell processes during infection are enacted by virally-encoded proteins that act as molecular hubs. When these processes intersect with pathways that encourage the development of cancer, such as the p53 tumour suppressor pathway, these virally-encoded molecular hub proteins function as viral oncoproteins. One major requirement of both virus infected cells and rapidly growing cancer cells is an altered metabolism that …


The Effects Of Maternal Delta-9-Tetrahydrocannabinol And Cannabidiol Exposure On Fetal Heart Development In Mice, Gregory Robinson Dec 2020

The Effects Of Maternal Delta-9-Tetrahydrocannabinol And Cannabidiol Exposure On Fetal Heart Development In Mice, Gregory Robinson

Electronic Thesis and Dissertation Repository

Up to 22.6% of pregnant women consume cannabis during pregnancy despite the uncertainty of teratogenicity of the main ingredients in cannabis, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). This study tested the hypothesis that gestational THC and CBD exposure leads to heart abnormalities. Daily, oral THC exposure induced heart abnormalities in 68% of offspring with three main phenotypes including thickened semilunar valves, ventricular myocardial hypertrophy and hypoplastic coronary arteries in fetuses, and postnatal cardiac dysfunction. Altered gene expression of key cardiogenic regulators, increased proliferation, and reduced epicardial epithelial-to-mesenchymal-transition were demonstrated implicating potential mechanisms responsible for these abnormalities. Also, maternal CBD exposure resulted …


Hpv Mediated Antagonism Of The Il-18 Proinflammatory Pathway In Head And Neck Cancer, Wyatt W. Anderson Nov 2020

Hpv Mediated Antagonism Of The Il-18 Proinflammatory Pathway In Head And Neck Cancer, Wyatt W. Anderson

Electronic Thesis and Dissertation Repository

In this thesis, I examined the effect of human papillomavirus (HPV) on the proinflammatory IL-18 cytokine pathway in head and neck cancers. I investigated the expression and methylation of genes associated with this pathway using The Cancer Genome Atlas (TCGA) data. In HPV+ cancers, IL18, CASP1, and AIM2 were downregulated, while IL18BP was upregulated compared to HPV- cancers and adjacent non-cancerous tissues, and IL18’s promoter was significantly more methylated. I compared HPV+ and HPV- head and neck cancer cell lines for expression of RNA and protein levels of IL-18 and IL-18BP by qPCR, western blot, and ELISA. IL-18 …


Multiple Roles Of Nup1 In Arabidopsis Growth And Development, Raj K. Thapa Nov 2020

Multiple Roles Of Nup1 In Arabidopsis Growth And Development, Raj K. Thapa

Electronic Thesis and Dissertation Repository

The nuclear pore complex (NPC) is the gateway between the nucleus and cytoplasm, which provides the passage for transport of RNA, protein, and other molecules into and out of the nucleus. NPC is conserved across all eukaryotes and plays a vital role in various cellular processes. However, compared to other organisms, the study of NPC in plants is limited. Although more than 30 different types of nucleoporin proteins in the model plant Arabidopsis thaliana have been identified, none of those proteins has been studied in detail. In this thesis, I focused on one such protein named NUCLEOPORIN1 (NUP1) and investigated …


Genetic Basis Of Hybrid Sterility Between Drosophila Pseudoobscura And D. Persimilis, Alannah J.P. Mattice Oct 2020

Genetic Basis Of Hybrid Sterility Between Drosophila Pseudoobscura And D. Persimilis, Alannah J.P. Mattice

Electronic Thesis and Dissertation Repository

Speciation is the underlying process that leads to formation of new species, and therefore is the basis of biodiversity. Genes involved in each stage of speciation, such as those involved in interspecies sterility, remain elusive. Male hybrid sterility and postzygotic isolation between Drosophila pseudoobscura and D. persimilis was examined in this study through backcrossing of female hybrids into each parental line (introgression), selecting for a sterile sperm phenotype, needle-eye sperm. Sperm phenotypes did not separate through backcrossing; instead, males presented with multiple sperm phenotypes. A relationship between the phenotypes observed and the potential genes involved was examined through whole genome …


Pan-Cancer Analysis Of Telomerase Reverse Transcriptase (Tert) Isoforms, Mathushan Subasri Oct 2020

Pan-Cancer Analysis Of Telomerase Reverse Transcriptase (Tert) Isoforms, Mathushan Subasri

Electronic Thesis and Dissertation Repository

Reactivation of the multi-subunit ribonucleoprotein telomerase is the primary telomere maintenance mechanism in cancer, but it is rate-limited by the enzymatic component, telomerase reverse transcriptase (TERT). While regulatory in nature, TERT alternative splice variant/isoform regulation and functions are not fully elucidated and are further complicated by their highly diverse expression. In this thesis, I characterized TERT expression across normal and neoplastic tissues using TCGA and GTEx RNA-sequencing data. In doing so, I demonstrated the global overexpression and splicing shift towards full-length TERT in neoplastic tissue. Furthermore, my studies identified tumour subtype expression differences possibly regulated by subtype-specific characteristics, detailed heterogeneity …


Characterising The Role Of Ovol1 In Cell Growth Regulation, Maram Albakri Oct 2020

Characterising The Role Of Ovol1 In Cell Growth Regulation, Maram Albakri

Electronic Thesis and Dissertation Repository

The placenta supports the exchange of nutrients and gases between mother and fetus. Trophoblasts are the parenchymal cells of the placenta and perform the vast majority of its functions. There are different types of trophoblasts derived from stem cells called cytotrophoblasts (CTs). The balance between CT proliferation and differentiation is important for placental development. OVO-like 1 (OVOL1) is a transcription factor expressed in many epithelial lineages undergoing differentiation, including human differentiating CTs. The molecular mechanisms through which OVOL1 represses proliferation and/or promotes differentiation are unknown. We hypothesize that OVOL1 interacts with specific HDACs to repress CT proliferation. Ectopically expressing OVOL1 …


Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz Sep 2020

Dnajc7, A Molecular Chaperone Protein That Modulates Protein Misfolding In Amyotrophic Lateral Sclerosis (Als), Meaghan Kathleen Stoltz

Electronic Thesis and Dissertation Repository

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease associated with protein misfolding and dysregulated cellular protein quality control mechanisms. Molecular chaperones, and heat shock proteins (Hsp), are key players in maintaining cellular protein quality control. DNAJC7 is an understudied cytosolic Hsp40 that works together with Hsp70 and Hsp90 to regulate proper protein folding or degradation. Of note, mutations in the gene encoding DNAJC7 were discovered to cause familial ALS. We asked whether ALS-associated mutations in DNAJC7 compromise its function as a chaperone, which may cause the toxic accumulation of misfolded proteins. This study attempts to uncover the functions of DNAJC7 …


Characterization Of Mechanotransduction In Annulus Fibrosus Cells, Min Kyu M. Kim Aug 2020

Characterization Of Mechanotransduction In Annulus Fibrosus Cells, Min Kyu M. Kim

Electronic Thesis and Dissertation Repository

IVD degeneration is a multifactorial pathological process associated with back pain. While biomechanical factors are important regulators of IVD homeostasis, mechanical loading also contribute to the onset of IVD degeneration. Importantly, the mechanotransduction pathways that mediate cell type-specific responses to mechanical loading are not well understood. Transient receptor potential vanilloid 4 (TRPV4) is a multimodally activated cell surface cation channel implicated as a mechanoreceptor regulating the mechano-response in other musculoskeletal cell types. Using both in vitro and in vivo models, the current study aimed to characterize the role of TRPV4 in annulus fibrosus (AF) cell mechanotransduction. Using a mechanically dynamic …


Exploiting The Immunomodulatory Potentials Of Inkt Cells In Sepsis And Cancer., Joshua Choi Aug 2020

Exploiting The Immunomodulatory Potentials Of Inkt Cells In Sepsis And Cancer., Joshua Choi

Electronic Thesis and Dissertation Repository

Invariant natural killer T (iNKT) cells are a unique unconventional T cell subset that recognize glycolipids presented by CD1d expressing cells. The prototypical glycolipid agonist of iNKT cells, α-Galactosylceramide (α-GalCer), can induce the rapid release of an arsenal of cytotoxic effector molecules and enormous amounts of immunomodulatory cytokines as early as two hours after activation. In addition to α-GalCer, various glycolipid agonists are available that allow for specific, in vivo targeting of iNKT cells, and can exert divergent T-helper (TH)1 and/or TH2 immune responses. Therefore, the type of response instigated by iNKT cells can profoundly influence …


Mass Spectrometry Identification Of Membrane-Type 1 Matrix Metalloproteinase (Mt1-Mmp) Binding Partners Following Co-Immunoprecipitation In Mcf-7 Cells, Bradley Bork Jun 2020

Mass Spectrometry Identification Of Membrane-Type 1 Matrix Metalloproteinase (Mt1-Mmp) Binding Partners Following Co-Immunoprecipitation In Mcf-7 Cells, Bradley Bork

Electronic Thesis and Dissertation Repository

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral multidomain membrane protease involved in extracellular matrix remodelling. No longer recognized solely as a destructive enzyme, MT1-MMP proteolytic and non-proteolytic activities are involved in a variety of cellular processes. I hypothesized that the diverse functions of MT1-MMP are dependent on domain-specific binding partner interactions that elicit a cellular response. Using a combination of co-immunoprecipitation and mass spectrometry, 248 unique proteins were isolated in MT1-MMP variant expressing MCF-7 cells. Newly identified binding partners suggest potential roles of MT1-MMP in the nucleus, endoplasmic reticulum, cytoplasm, and plasma membrane. Additionally, the cytoplasmic domain of MT1-MMP …


Regulators Of Ectopic Calcification In A Mouse Model Of Dish: A Multi-Omics Perspective, Matthew A. Veras Jun 2020

Regulators Of Ectopic Calcification In A Mouse Model Of Dish: A Multi-Omics Perspective, Matthew A. Veras

Electronic Thesis and Dissertation Repository

Diffuse idiopathic skeletal hyperostosis (DISH) is a non-inflammatory spondyloarthropathy and the second most common form of arthritis characterized by formation of ectopic mineral along the spine. Pathological findings in DISH include regional calcification of the anterior longitudinal ligament, paraspinal connective tissues, and annulus fibrosus (AF) of the intervertebral disc (IVD). Clinical symptoms of DISH include increased spine stiffness, decreased spinal range of motion, and in severe cases dysphagia and spinal cord/nerve root compression. The molecular pathways responsible for DISH have not been delineated and as such, there are no disease-modifying treatments. Clinical treatment for DISH is limited to surgical resection …


The Amino Terminal Domains Of Sheep Cx46 Or Cx50 Determine Their Gap Junction Channel Open Stability And Unitary Channel Conductance, Benny Yue Jun 2020

The Amino Terminal Domains Of Sheep Cx46 Or Cx50 Determine Their Gap Junction Channel Open Stability And Unitary Channel Conductance, Benny Yue

Electronic Thesis and Dissertation Repository

Connexins form intercellular communication channels known as gap junctions (GJs), which are found throughout the vertebrate species. GJs formed by different connexins harbor unique channel properties that have not been fully defined. High-resolution structures of native Cx46 and Cx50 GJs from sheep (sCx46 and sCx50) were recently resolved. Molecular dynamics studies identified the NT domains, especially the 9th position, as key determinants in the differences of energetic barrier to K+ permeation in sCx46 and sCx50 GJs. We studied functional properties of GJs formed by sCx46, sCx50, NT domain swapped chimeras (sCx46-50NT and sCx50-46NT), and point variants at the …


B Cell Acute Lymphoblastic Leukemia Is Driven By Activating Janus Kinase Mutations Cooperating With Spi1 And Spib Deletions In A Murine Model, Michelle Lim Jun 2020

B Cell Acute Lymphoblastic Leukemia Is Driven By Activating Janus Kinase Mutations Cooperating With Spi1 And Spib Deletions In A Murine Model, Michelle Lim

Electronic Thesis and Dissertation Repository

B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis and their mechanism(s) of arising in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreDPB). Whole exome sequencing revealed recurrent mutations in Jak3 (encoding Janus Kinase 3) and Jak1. Mutations with high variant allele frequency (VAF) were dominated by C->T transition mutations that were compatible with AID, whereas the majority of mutations, with low VAF, were dominated by C->A transversions associated with …


Regulation Of Endoplasmic Reticulum Stress In Saccharomyces Cerevisiae, Sarah R. Chadwick Apr 2020

Regulation Of Endoplasmic Reticulum Stress In Saccharomyces Cerevisiae, Sarah R. Chadwick

Electronic Thesis and Dissertation Repository

The budding yeast Saccharomyces cerevisiae has been used extensively to uncover the genetic mechanisms that control basic cellular processes, including survival, maintenance, and response to stressors. One metric of yeast survival is chronological lifespan (CLS), which is the amount of time non-dividing yeast cells can survive at stationary phase. Variations in CLS following genetic alteration are used to understand the function of specific genes and pathways in cellular aging. Many factors contribute to aging, including accumulation of toxic misfolded secretory proteins in the endoplasmic reticulum (ER stress), to which the cell responds through activation of ER stress signaling pathways, such …


Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin Feb 2020

Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin

Electronic Thesis and Dissertation Repository

Human decellularized adipose tissue (DAT) represents a promising extracellular matrix (ECM) source for the development of biomaterials, with its properties conductive of angiogenesis, adipogenesis, and scaffold remodelling. This thesis sought to provide new fundamental insight into the design of ECM-derived bioscaffolds by developing novel modular biomaterials for soft connective tissue regeneration and by studying the effects of ECM composition on cell function and fate.

Initial studies explored the effects of ECM composition of pre-assembled bead foams derived from DAT or commercially-sourced bovine collagen (COL) on human wound edge dermal fibroblasts (weDFs) sourced from chronic wounds. In vitro testing under conditions …


Thyroxine-Dependent And -Independent Effects On Premature Aging And Myelination In Atrx Mutant Mice, Megan E. Rowland Feb 2020

Thyroxine-Dependent And -Independent Effects On Premature Aging And Myelination In Atrx Mutant Mice, Megan E. Rowland

Electronic Thesis and Dissertation Repository

ATRX is an ATP-dependent chromatin remodeler required to safeguard genomic integrity. Conditional deletion of Atrx in the mouse embryonic forebrain and anterior pituitary in AtrxFoxg1Cre mice phenocopies mouse models of progeria which display increased DNA damage, coupled with reduced lifespan, growth and subcutaneous fat. These mice also have severely low circulating levels of insulin like growth factor 1 (IGF-1) and (T4) which have been reported in models of premature aging. Based on evidence that Igf1 is activated by the ligand-bound thyroid hormone receptor, I tested whether T4 supplementation could restore IGF-1 levels and ameliorate premature aging phenotypes in Atrx …


Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon Feb 2020

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon

Electronic Thesis and Dissertation Repository

Over the lifetime of an organism, neurons must establish, remodel, and maintain precise connections in order to form neural circuits that are required for proper nervous system functioning. Disruptions in these processes can lead to neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder. Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex have been implicated in ID, yet the role of this complex in neurons is poorly understood. In this project, I established cell-type specific methods to examine the effect of SWI/SNF subunit knockdowns on gene transcription and chromatin structure in the memory-forming neurons of …


The Role Of Connexin And Pannexin Large-Pore Channels In Hearing, Julia Abitbol Nov 2019

The Role Of Connexin And Pannexin Large-Pore Channels In Hearing, Julia Abitbol

Electronic Thesis and Dissertation Repository

Connexin and pannexin large-pore channels allow the regulated passage of small molecules at sites of cell-cell contacts, and from the cytosol to the extracellular milieu, respectively. Since it has been known for many years that Cx26 and Cx30 gap junction proteins are crucial in hearing we propose that Cx43 might also be important in hearing. Here we used two different genetically modified mouse lines that contain systemic Cx43 gene mutations that reduces gap junctional intercellular communication (GJIC) to examine whether Cx43 is also important for proper hearing function. Furthermore, since pannexins have also been postulated to be involved in auditory …


The Role Of Xenopus Laevis Reck In Ecm Remodeling And Tissue Patterning, Jessica Willson Nov 2019

The Role Of Xenopus Laevis Reck In Ecm Remodeling And Tissue Patterning, Jessica Willson

Electronic Thesis and Dissertation Repository

Proper cell-cell and cell-extracellular matrix (ECM) interactions are vital for cell migration and patterning of the vertebrate embryo. Matrix metalloproteinases (MMPs) and their inhibitors, reversion-inducing cysteine-rich proteins with Kazal motifs (RECK) and tissue inhibitors of metalloproteinases (TIMPs), are all differentially expressed during embryogenesis to regulate such ECM remodeling events and cell interactions. While TIMPs are a family of 4 secreted proteins that share overlapping substrate specificities of MMPs, RECK is unique in that it is a membrane-anchored MMP inhibitor that is embryonic lethal in mice. I used Xenopus laevis as a model organism to investigate the role of RECK as …


Effect Of N-Acetyl-L-Cysteine Prevention Or Intervention On Diet Induced Beta Cell Compensation And Dysfunction, Madison Wallace Oct 2019

Effect Of N-Acetyl-L-Cysteine Prevention Or Intervention On Diet Induced Beta Cell Compensation And Dysfunction, Madison Wallace

Electronic Thesis and Dissertation Repository

Type 2 diabetes mellitus (T2DM) progression increases oxidative stress which contributes to beta cell compensation and eventual dysfunction. To investigate the role of antioxidant N-acetyl-L-cysteine (NAC) on beta cell function and pancreatic stellate cell activation (aSMA+) during early and late stages of compensation, NAC was used for preventative (p) and intervention (i) treatments in C57BL/6N mice fed a 60% kcal high-fat diet (HFD) for 8 or 22 weeks. Significantly improved glucose tolerance was observed at 22 weeks following pNAC treatment in HFD mice. Although 22-week HFD mice displayed hyperinsulinemia, beta cell hypertrophy, decreased beta cell PDX-1 nuclear localization, …


Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc Sep 2019

Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc

Electronic Thesis and Dissertation Repository

Cellular therapies targeted at stimulating therapeutic angiogenesis in individuals with critical limb ischemia (CLI) have been under intense investigation. Hematopoietic progenitor cells (HPC) derived from umbilical cord blood have been previously shown to support limb revascularization in animal models of CLI, despite limited cell survival at the site of ischemia. This study attempted to improve HPC survival after transplantation and prolong pro-angiogenic function using human decellularized adipose tissue (hDAT) as a novel cell delivery platform. Compared to HPC conventionally grown on tissue-cultured plastic, hDAT scaffolds were shown to promote viability and proliferation of seeded HPC, and had cell- instructive effects …


The Role Of Tra1 In Cellular Stress Responses In Yeast: Implications For Human Diseases, Yuwei Jiang Aug 2019

The Role Of Tra1 In Cellular Stress Responses In Yeast: Implications For Human Diseases, Yuwei Jiang

Electronic Thesis and Dissertation Repository

Regulation of gene expression under stress conditions involves chromatin remodeling through post-translational modification of histones. One of these modifications, acetylation of lysine residues, regulates transcription initiation and is linked to a variety of essential cellular processes including cell cycle control, DNA repair, and importantly, activation of cellular stress response pathways. Dysregulation of histone acetylation has been observed in many stress-related diseases such as inflammatory diseases, cancer, neurodegenerative disorders, and fungal infections. Tra1 is the only essential component of both the highly conserved SAGA and NuA4 histone acetyltransferase (HAT) complexes that are responsible for acetylation of histones and other proteins. Tra1 …


Integrin-Linked Kinase Modulation Of Melanocytic Lineage Cells, Melissa Crawford Aug 2019

Integrin-Linked Kinase Modulation Of Melanocytic Lineage Cells, Melissa Crawford

Electronic Thesis and Dissertation Repository

Melanocytes are specialized melanin-producing cells found in the skin, inner ear and heart. Melanocyte abnormalities cause many human disorders, including pigmentation defects, deafness, and melanoma. A better understanding of melanocyte biology is essential to address those disorders. Integrin-linked kinase (ILK) is a ubiquitous scaffold protein, essential for epidermal development. Importantly, the mechanisms by which ILK modulates the development and functions of melanocytic lineage cells remains unknown. To help address this void, I have developed cell-based models, as well as a reporter mouse model that allows tamoxifen-inducible Ilk gene inactivation specifically in melanocytic cells.

I observed that inactivation of Ilk in …


Hei-Oc1 Cochlear Cells As An In Vitro Model To Study The Role Of Connexins In Ototoxicity And Hearing Loss, Rianne Beach Aug 2019

Hei-Oc1 Cochlear Cells As An In Vitro Model To Study The Role Of Connexins In Ototoxicity And Hearing Loss, Rianne Beach

Electronic Thesis and Dissertation Repository

Connexin 26 (Cx26) and Cx30 mediate the intercellular exchange of metabolites and ions within the cochlea in a process known as gap junctional intercellular communication (GJIC). Cochlear cell death and subsequent hearing loss can arise after treatment with ototoxic therapeutics and Cx26 mutant expression. We investigated the role of connexins and GJIC in the development of ototoxicity in HEI-OC1 cochlear-derived cells. The susceptibility of HEI-OC1 cells to aminoglycoside antibiotics and cisplatin-induced cell death was not influenced by the ablation of connexins and GJIC. However, the expression of mitochondrial apoptosis or ER stress markers was altered by the degree of GJIC. …