Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Manufacturing

Design And Fabrication Of A Polymer Fdm Printer Capable Of Build Parameter Monitoring And In-Sit Geometric Monitoring Via Photogrammetry, Travis Roberts Dec 2021

Design And Fabrication Of A Polymer Fdm Printer Capable Of Build Parameter Monitoring And In-Sit Geometric Monitoring Via Photogrammetry, Travis Roberts

All Theses

Additive manufacturing, or 3D printing, is a complex process that creates free-form geometric objects by sequentially placing material in a location to construct an object, usually as a layer-by-layer process. One of the most widespread methods is Fused Deposition Modeling (FDM). FDM is used in many of the consumer-grade polymer 3D printers available today. While consumer grade machines are cheap and plentiful, they lack many of the features desired in a machine used for research purposes and are often closed-source platforms. Commercial-grade models are more expensive and are also usually closed-source platforms that do not offer flexibility for modifications often …


Med-Drop Pill Dispenser, Cole Pike, Taylor Morris, Christopher Bruni, Jose Gomez Jun 2021

Med-Drop Pill Dispenser, Cole Pike, Taylor Morris, Christopher Bruni, Jose Gomez

Mechanical Engineering

Veterans’ Affairs home care nurses currently spend anywhere from thirty minutes to two hours filling out monthly prescriptions one pill at a time to veterans who are unable to leave their homes. The goal of this project was to create an easy-to-use device that could be left at a patient’s home that nurses could use to quickly and accurately dispense medication into the patient’s monthly pill box.


Design Of A Cable-Driven Manipulator For Large-Scale Additive Manufacturing, Phillip Chesser May 2021

Design Of A Cable-Driven Manipulator For Large-Scale Additive Manufacturing, Phillip Chesser

Masters Theses

Additive manufacturing of concrete is a growing field of research, yet current motion platforms do not offer viable routes towards large scale deployable systems. This thesis presents the design and analysis of a novel cable-driven robot for use in large scale additive manufacturing. The system developed, termed SkyBAAM, is designed to be easily deployable to a construction site for on-site additive manufacturing of buildings and other large structures. The design philosophy behind this system is presented. Analysis of this system first explores the kinematics, and stiffness as a function of cable tension. Analysis of the workspace and singularities is also …


Printing Parameter Determination And Characterization Of Additively Manufactured Kovar Steel, Will Macgreggor Davidson Apr 2021

Printing Parameter Determination And Characterization Of Additively Manufactured Kovar Steel, Will Macgreggor Davidson

Mechanical Engineering ETDs

Kovar (ASTM F15, UNS K94610) steel has many applications across Sandia National Laboratories but is best known within academia and industry for its glass-to-metal and glass-to-ceramic hermetic sealing capabilities. Successful printing parameters for a Renishaw AM400 to additively manufacture artifacts from Kovar steel powder have been determined. The printed test artifacts have been studied for ultimate tensile strength, density, surface roughness, hardness, bulk composition, and impact toughness. Longer throughput measurements such as porosity, coefficient of thermal expansion, and grain structure studies have been established for future delivery to the research team. Yet another delivery from this thesis research is a …


Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy Jan 2021

Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy

Williams Honors College, Honors Research Projects

The goal of this project is to study the performance of a 3D printed mechanical part subjected to topology optimization. A part that is somewhat complex in its load bearing and geometry will be selected. That part will then be designed, finite element analysis will be performed on it to optimize its topology, and then it will be 3D printed and tested. The goal of topology optimization is to either save material cost and/or part weight due to the ability of 3D printing to manufacture parts with complex and obscure geometry.