Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Manufacturing

Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates Dec 2021

Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates

Theses and Dissertations

This study produced cross-laminated timber panels at a range of four lamina thickness (5/8, 1, 1 1/8, and 1 1/4 inch) and three bonding pressures (50, 125, 200 psi), producing a total of 12 panels for mechanical testing. The goal of this study is to observe how the thickness and pressure trends affect the mechanical properties of CLT. Tests include flatwise bending, flatwise shear, internal-bond, and delamination. Results showed that bending MOE decreases as the panel thickness increases while bonding pressure had no significance. Bending MOR was less significant for the thickness and more significant for pressure compared to the …


Rapid Annealing Of Perovskite Solar Cell Thin Film Materials Through Intense Pulse Light., Amir Hossein Ghahremani Aug 2021

Rapid Annealing Of Perovskite Solar Cell Thin Film Materials Through Intense Pulse Light., Amir Hossein Ghahremani

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) have garnered a great attention due to their rapid efficiency improvement using cheap and solution processable materials that can be adapted for scalable high-speed automated manufacturing. Thin film perovskite photovoltaics (PVs) are typically fabricated in an inert environment, such as nitrogen glovebox, through a set of deposition and annealing steps, each playing a significant role on the power conversion efficiency (PCE), reproducibility, and stability of devices. However, atmospheric processing of PSCs would achieve lucrative commercialization. Therefore, it is necessary to utilize materials and methods that enable successful fabrication of efficient PSCs in the ambient environment. The …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Noise Control In Sorting Conveyors, Eyra Herrera May 2021

Noise Control In Sorting Conveyors, Eyra Herrera

Mechanical Engineering Undergraduate Honors Theses

E-commerce has increased the necessity of effective material handling equipment in warehouses and distribution centers. Sorter conveyors systems facilitate material handling by providing a reliable and automated system to classify and distribute products in a gentle and rapid manner. With the steady increase of speed in sorter conveyors to satisfy today’s industry demand, some systems have started to produce high noise levels that could potentially affect workers’ health. Since decreasing the speed of these conveyors is not a viable option to decrease noise in sorter equipment, industries have opted to find other ways to apply noise control to their equipment. …


Hydraulic Balsa Wood Rising Bridge, Kaitlyn Greenfield Jan 2021

Hydraulic Balsa Wood Rising Bridge, Kaitlyn Greenfield

All Undergraduate Projects

What is the solution to allowing tall vessels to navigate past a vehicle bridge that is less than 10 [ft] above the water? To answer this question, a balsa wood bridge was designed, constructed, and tested. The bridge needed to articulate by mechanical means, allow for travel through the bridge, and be able to withstand ample force while the main structure only being constructed of balsa wood and glue. The project was analyzed in sections. These sections include: the bridge structure and its members, the hydraulic lift, and the pins needed for the bridge and hydraulic lift to operate. The …


Jcati Base Plate, Jacob Atamian Jan 2021

Jcati Base Plate, Jacob Atamian

All Undergraduate Projects

Students of the Mechanical Engineering Technology (MET) program at Central Washington University have contributed to an ongoing Carbon Fiber Recycler project funded by the Joint Center for Aerospace Technology Innovation (JCATI). The goal of this project was to modify the existing recycling system to produce a higher success rate of recycled carbon composite material. This report focuses on increasing the rigidity of the crushing gears so that the deflection occurring among the components during operation was below 0.005 inches to ensure proper operating conditions. The operating speed of the crushing gears was 2.5 rpm with a crushing load of 10,500 …


Mini Rc Baja Car, Jason Schindler Jan 2021

Mini Rc Baja Car, Jason Schindler

All Undergraduate Projects

Incorporating each aspect of engineering incorporated into a senior project is difficult. That is why an RC Baja car is a great senior project for Mechanical Engineering students. The approach that students must take to design, construct, and test the car is to set parameters, and to make overall goals that can be easily measured. These goals include, but not limited to things like a $700 budget and the ability to withstand a 1-foot drop to a flat surface on all four wheels simultaneously. First, the design must meet the specifications and rules that are set previously. This ensures that …


Balsa Wood Bridge, Andrew Harris Jan 2021

Balsa Wood Bridge, Andrew Harris

All Undergraduate Projects

Faculty at Central Washington University proposed a challenge to mechanical engineering students that could be accomplished in an in-home setting. The goal was to create a balsa wood bridge, weighing no more than 85 grams, that can support a load over an open span and raise above its resting position by means of a mechanical system. To produce a successful solution to the problem, a vertical lift bridge was created consisting of two lifting towers and a load bearing bridge. Using equations of static equilibrium and strength of materials, the required width for each member was determined. Project requirements were …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …