Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Other Materials Science and Engineering

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica Jan 2023

Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica

Theses and Dissertations--Chemical and Materials Engineering

A dispenser cathode’s ability to thermionically emit electrons is highly dependent on its material properties, especially those of the surface. Understanding the relationship between surface properties and electron emission, therefore, is vital to reach the next generation of the many vacuum electron devices (VEDs) that rely on the physics of electron emission. In the past century, many techniques have been developed to characterize material surfaces and quantify thermionic emission. These techniques are based on a wide range of different physical phenomena, including measuring photoemission via the photoelectric effect, measuring the electrostatic potential between metals in electrical contact, and current collection …


Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai Jan 2023

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …