Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Materials Science and Engineering

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram Jan 2023

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram

UNF Graduate Theses and Dissertations

Using ancient minerals as paleo-detectors is a proposed experimental technique expected to transform supernova neutrino and dark matter detection. In this technique, minerals are processed and closely analyzed for nanometer scale damage track remnants from nuclear recoils caused by supernova neutrinos and possibly dark matter. These damage tracks present the opportunity to directly detect and characterize the core-collapse supernova rate of the Milky Way Galaxy as well as the presence of dark matter. Current literature presents theoretical estimates for these potential tracks, however, there is little research investigating the experimental feasibility of this technique. At the University of North Florida, …


Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons Jan 2023

Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons

UNF Graduate Theses and Dissertations

This thesis involves the fabrication and characterization of devices made from two different superconducting materials: yttrium barium copper oxide (YBCO), a high-TC complex oxide, and niobium nitride (NbN), a low-TC transition metal nitride. Both types of devices are fabricated on strontium titanate substrates, which provides a good lattice match to YBCO and also an extremely large permittivity at low temperature. We demonstrate that wet etching of YBCO thin films via bromine can be a viable microfrabriation technique for the material. Using approximately 35 nm thick epitaxially grown YBCO on an STO substrate, we were able to fabricate YBCO “microwires” with …