Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of North Florida

Discipline
Keyword
Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Other Materials Science and Engineering

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram Jan 2023

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram

UNF Graduate Theses and Dissertations

Using ancient minerals as paleo-detectors is a proposed experimental technique expected to transform supernova neutrino and dark matter detection. In this technique, minerals are processed and closely analyzed for nanometer scale damage track remnants from nuclear recoils caused by supernova neutrinos and possibly dark matter. These damage tracks present the opportunity to directly detect and characterize the core-collapse supernova rate of the Milky Way Galaxy as well as the presence of dark matter. Current literature presents theoretical estimates for these potential tracks, however, there is little research investigating the experimental feasibility of this technique. At the University of North Florida, …


Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli Jan 2023

Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli

UNF Graduate Theses and Dissertations

Direct current (DC) and radio frequency (RF) sputtering methods have been commonplace in industry for several decades and widely studied in literature. Hard films of nitrides, such as titanium nitride (TiN), have been deposited using reactive DC sputtering onto cutting tools and medical devices extensively as well. For these applications, the films require excellent adhesion, high density, and high hardness. High-Power Impulse Magnetron Sputtering (HIPIMS) has emerged over the last several years as a method to produce films with increased density and mechanical properties. Process-structure-property relationships for reactive HIPIMS are not yet well developed. Additionally, conventional HIPIMS suffers from relatively …


Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons Jan 2023

Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons

UNF Graduate Theses and Dissertations

This thesis involves the fabrication and characterization of devices made from two different superconducting materials: yttrium barium copper oxide (YBCO), a high-TC complex oxide, and niobium nitride (NbN), a low-TC transition metal nitride. Both types of devices are fabricated on strontium titanate substrates, which provides a good lattice match to YBCO and also an extremely large permittivity at low temperature. We demonstrate that wet etching of YBCO thin films via bromine can be a viable microfrabriation technique for the material. Using approximately 35 nm thick epitaxially grown YBCO on an STO substrate, we were able to fabricate YBCO “microwires” with …


Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto Jan 2023

Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto

UNF Graduate Theses and Dissertations

This project employs multi-instrument materials characterization to analyze material made with the “Cold Spray” additive manufacturing process. Cold spray is an emerging additive manufacturing technique with unique benefits resulting from its low temperature adhesion process induced by plastic deformation. Metallic powder collides at high speeds creating three dimensional materials and coatings without the need for melting. Copper cold sprayed specimens were analyzed using a series of imaging techniques to characterize the microstructure at varying levels of detail and magnification. Scanning electron microscopy and electron back scattered diffraction were paired with microhardness testing to generate a correlative comparison between microstructure and …


Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney Jan 2022

Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney

UNF Graduate Theses and Dissertations

Ottawa 50/70 sand specimens and natural beach sand samples were treated using bio-augmented geomicrobies via a surface percolation technique. Testing was conducted on these specimens to determine how resultant calcium carbonate precipitation changed as a function of temperature, depth from the surface, and in the presence of magnesium. Specifically, x-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Spectroscopy (EDS) were used to determine and quantify the presence of calcium carbonate and its associated phase. Results showed a direct relationship between temperature and precipitated calcium carbonate. In addition, as an unintended consequence associated with the treatment, ammonium …


Effects Of Corrosion On The Sers Activity And Optical Response Of Silver Nanorods, Christopher J. Mealer Jan 2021

Effects Of Corrosion On The Sers Activity And Optical Response Of Silver Nanorods, Christopher J. Mealer

UNF Graduate Theses and Dissertations

The nanoscience and nanotechnology community have a common goal in better understanding the surfaced enhanced Raman scattering (SERS) that occurs due to laser plasmon resonance in conjunction with metal enhanced substrates. Metallic nanostructures, such as silver (Ag) nanorods, are widely used in biological and chemical sensing applications that rely on the measurement of subtle changes in the optical response of the nanostructures in the presence of a target agent. The optical response of Ag nanorods and most other metallic nanostructures is highly sensitive to morphology and surface chemical termination. In pristine condition, the optical properties of Ag nanorods and other …


Advance Metallic Reinforcement Of Vat Photo Polymerized Parts, Scott Zinn Jan 2021

Advance Metallic Reinforcement Of Vat Photo Polymerized Parts, Scott Zinn

UNF Graduate Theses and Dissertations

The metallization or metallic reinforcement of polymer parts has been widely used in industry for several decades. Polymer parts are classically metalized for aesthetics, chemical and thermal resistance, electrical conductivity, and mechanical strength. Metallization has been shown to increase strength of polymer parts when compared to the strength of the bulk material without metallization. Additive manufacturing (AM) techniques that have emerged in the last few decades produce parts with different surface features and chemistry than the typical polymer part produced through injection molding. AM parts are typically weaker than traditionally manufactured parts from the same material due to intrinsic details …