Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Materials Science and Engineering

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky Jan 2004

Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky

Faculty Publications

We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120.