Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 66

Full-Text Articles in Metallurgy

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Characterization Of Residual Stress And Precipitate Evolution In Aluminum 2xxx Self-Reacting Friction Stir Welds, Benjamin Joe Wing Aug 2023

Characterization Of Residual Stress And Precipitate Evolution In Aluminum 2xxx Self-Reacting Friction Stir Welds, Benjamin Joe Wing

Doctoral Dissertations

2xxx series aluminum alloys possess attractive properties for structural aerospace applications including high strength to weight ratio, corrosion resistance, and stable cryogenic performance. Solid state joining processes are often employed to reduce weld defects and improve weld performance/consistency as many alloys of this range have poor weldability for traditional fusion based joining techniques. One such process, self-reacting friction stir welding (SRFSW) allows for consistent high-quality, welding of large and curved articles is often used in the construction of large structures such as launch vehicle liquid propellant tanks.

Despite the merits of this process, joint softening (a decrease in mechanical properties …


Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez Aug 2023

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez

Doctoral Dissertations

Pursuing advanced structural materials with enhanced performance, reduced weight, and lower costs is a constant endeavor in the aerospace and automotive industries. Conventional structural alloys, such as cast irons, carbon steels, and titanium alloys, have strength, weight, and cost limitations. Aluminum-based alloys, known for their lightweight and high strength, have gained popularity in these industries. This dissertation focuses on investigating microstructure and mechanical behavior of novel powder-extruded Al-Ce-Mg alloys as potential candidates for high-performance structural materials.

This research explores using powder extrusion, a well-established forging methodology in the steel industry, to produce Al-Ce-Mg alloys with improved properties and aims to …


Refractory High-Entropy Alloys: Design, Fabrication, Characterization, And Nanoparticle Synthesis, John Hutson Whitlow Aug 2023

Refractory High-Entropy Alloys: Design, Fabrication, Characterization, And Nanoparticle Synthesis, John Hutson Whitlow

Masters Theses

High-Entropy Alloys have been a highly researched area of metals ever since their introduction in 2004 by Brian Cantor and Jien-Weh Yeh. In the continued research of High-Entropy Alloys (HEAs), a specific area concerning Refractory High-Entropy Alloys (RHEAs) has emerged for their high-temperature applications. Although RHEAs have maintained high strength and toughness at high temperatures, their low ductility still needs to be addressed. A dataset was created to find correlations between various characteristics of RHEAs and their composition. A set of seven compositions were selected and fabricated. Mechanical tests were run on the seven compositions, and a proposal was written …


A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone May 2023

A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone

Doctoral Dissertations

5Additive Manufacturing (AM) is defined in the American Society for Testing and Materials (ASTM) standard F2792 as “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. It provides an advanced method for building complex geometries and parts for high performance with a significant cost savings. 55It’s advantages include the reduced need for tools and molds commonly used in manufacturing, a large reduction in wasted material, much shorter manufacturing cycles for the building of hardware, and its uniquely inherent ability to produce much more complex shapes. …


Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco May 2023

Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco

Doctoral Dissertations

The design of Al alloys has become an important topic in Additive Manufacturing (AM). The adoption of Al alloys to AM has been difficult because traditional alloys are prone to processing related defects such as solidification cracking. The Al-10Si-Mg alloy was initially adopted because of its resistance to solidification cracking. However, the Al-10Si-Mg alloy has reduced tensile properties especially at high temperatures, where the silicon phase coarsens readily. Therefore, efforts have been made to design new Al alloys that can take advantage of the AM processing. The goal of new alloys is to optimize based on rapid solidification conditions, while …


Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson May 2023

Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson

Masters Theses

Copper is commonly used in aluminum alloys to increase its strength by solid solution and precipitation strengthening, however, the corrosion resistance is inversely related to the amount of copper in the alloy. Over 70 percent of material used to produce aluminum alloys in the US come from recycled (secondary) alloys, many of which have a copper content of more than one percent by weight. Alloys with tightly controlled tolerances, where copper is seen as an impurity, are unable to utilize many of the recycling feedstock without adding newly processed (primary) aluminum to dilute impurities to within specifications. Primary aluminum is …


Kinetics And Phase Stability Of Nano-Scale Precipitates In Fe-Based Binary Alloys During Ion Irradiations, Yajie Zhao May 2023

Kinetics And Phase Stability Of Nano-Scale Precipitates In Fe-Based Binary Alloys During Ion Irradiations, Yajie Zhao

Doctoral Dissertations

Due to the high void-swelling resistance and good mechanical, thermal and chemical properties, FeCr based ferritic-martensitic steels are promising structural materials in future nuclear reactors. However, they suffer from the well-known “475 °C embrittlement” phenomenon due to formation of Cr-rich alpha prime (α’) precipitates. Despite the extensive observation of α’ after neutron irradiations, α’ formation was seldom reported after high dose rate ion irradiations.

In this study, high purity FeCr alloys with Cr concentrations of 5-18% were irradiated by 8 MeV Fe ions at -123 °C to 450 °C, 10-5 – 10-3 dpa/s to mid-range doses of 0.37-3.7 …


Compositional Effects On The Mechanical Properties And Deformation Mechanisms Of Face-Centered Cubic High-Entropy Alloys, Joshua L. Cicotte Dec 2022

Compositional Effects On The Mechanical Properties And Deformation Mechanisms Of Face-Centered Cubic High-Entropy Alloys, Joshua L. Cicotte

Doctoral Dissertations

High entropy alloys, HEAs, have expanded the compositional spaces of modern metallurgy into highly concentrated and chemically complex alloys, previously believed to be unproductive. With this newfound compositional freedom, comes additional control, allowing for new investigations into previously established mechanisms. To discover new and potentially useful alloys, the HEA field is continually expanding away from the equiatomic solid solutions that dominated early work. The work presented in this dissertation utilizes two, intuitive, pseudo-binary HEA systems to investigate compositional effects on solid solution strengthening in highly concentrated alloys and twinning and transformation induced plasticity. It furthers the understanding of the mechanical …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Fundamental Understanding Of The Transient Melt Pool Dynamics, Solidification Kinetics And Build Texture In Spot-Melt Additive Manufacturing Of Ti-6al-4v, Rakesh Rajaram Kamath Aug 2022

Fundamental Understanding Of The Transient Melt Pool Dynamics, Solidification Kinetics And Build Texture In Spot-Melt Additive Manufacturing Of Ti-6al-4v, Rakesh Rajaram Kamath

Doctoral Dissertations

The overarching goal of this dissertation is to better understand the underlying process-structure relationships in play during the implementation of a spot melt strategy for metal additive manufacturing, which has become a popular alternative to the conventional raster melt strategy for site-specific microstructure control. In the first part of this dissertation, the effect of a spot melt strategy on the solidification texture, variant selection, phase fraction, and their variations along the build height of an E-PBF Ti-6Al-4V is investigated in comparison to a conventional linear melt strategy using high-energy synchrotron x-ray diffraction. In spite of the thermal excursions involved, the …


Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan May 2022

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan

Doctoral Dissertations

Nuclear energy technology can be exponentially advanced using advanced manufacturing, which can drastically transform how materials, structures, and designs can be built. Ultrasonic Additive Manufacturing (UAM) represents one of the four main additive manufacturing methods, although it is also the newest. As UAM technology and applications develop, a fundamental understanding of the bonding mechanism is crucial to fully realize its potential. Currently UAM bonding is considered to occur through breaking down surface asperities and removing surface oxides. Plastic deformation occurs although its role is currently unclear. This research analyzes material configurations in a variety of geometries, with similar and dissimilar …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …


Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin Dec 2021

Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin

Doctoral Dissertations

Ferritic-martensitic steels are attractive candidate materials for fusion and advanced fission reactors primarily due to their low swelling characteristic, attractive thermo-mechanical properties, and the potential for development of nanostructured ferritic alloys. However, significant discrepancies exist regarding the effect of solutes and irradiation temperature on cavity swelling under ion versus neutron irradiation conditions. Several mechanisms have been proposed that may affect cavity swelling, but no general theory or model has received complete acceptance to explain these phenomena.

To better understand the formation of cavities in ferritic steels, we have performed multi-temperature (400-550°C) single-beam and simultaneous dual-beam irradiations (ex-situ and in-situ) on …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Studies Of Creep Damage In The Heat-Affected Zone Of 9cr-1mo-Vnb Steel Weldments, John William Bohling Aug 2021

Studies Of Creep Damage In The Heat-Affected Zone Of 9cr-1mo-Vnb Steel Weldments, John William Bohling

Doctoral Dissertations

Creep strength enhanced ferritic (CSEF) steels are used in power plants for high temperature, pressure-containing welded components such as steam headers. One CSEF steel, 9Cr-1Mo-VNb or Grade 91, often exhibits localized creep deformation and cavitation in the weld heat-affected zone (HAZ), identified as Type IV creep damage. Three Grade 91 weldments were evaluated by creep testing and microstructural characterization using optical and scanning electron microscopy, combined with image analysis, to investigate microstructure evolution and creep damage. Two weldments fabricated from dissimilar base metals were used for direct comparison of creep damage in two materials simultaneously during cross-weld testing. Longitudinal creep …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Microstructural Characterization And Analysis Of Laser-Powder Bed Fusion Grcop-84 By Metallurgical And Neutron Scattering Methods, Robert Minneci May 2021

Microstructural Characterization And Analysis Of Laser-Powder Bed Fusion Grcop-84 By Metallurgical And Neutron Scattering Methods, Robert Minneci

Doctoral Dissertations

GRCop-84 or Cu-8Cr-4Nb (atomic %) is a structural high-heat-flux Cu alloy that is dispersion strengthened by C15 Laves Cr2Nb [Niobium Chromide] that has seen significant development with laser additive manufacturing (AM), specifically laser-powder bed fusion (L-PBF) in recent years. A review of the development, properties, and performance of GRCop alloys has been conducted and provides pertinent background. The body of research provides fundamental understanding regarding microstructure evolution and phase interaction of GRCop-84 through characterization by neutron and X-ray scattering and metallographic techniques. This research is intended to bridge fundamental research of L-PBF, Cu alloys, structural thermal conductors, and …


Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang May 2021

Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang

Doctoral Dissertations

Structure and dynamics at the atomic level in metallic glasses and liquids are poorly understood when compared to the crystalline solids. For instance, even though viscosity is the basic property of liquids, its atomistic origin is not well elucidated. Also, the physics of the fragility of liquids and the crossover phenomenon is far from full understanding. Earlier, through molecular dynamics (MD) simulations a direct connection was found between the timescale describing the macroscopic viscous behavior, the Maxwell relaxation time (tM = h/G, h is the shear viscosity and G is the high-frequency shear modulus) and …


Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims Dec 2020

Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims

Doctoral Dissertations

Eutectic casting alloys of aluminum and cerium are a recent discovery and early research describes an alloy with great potential to meet the growing demand for a lightweight, economical, high specific strength material for use in high-temperature or extremely corrosive environments. The broad application of aluminum alloys across industry sectors is driven by their collection of balanced properties including economical cost, high specific strength, and flexibility of their production pathways. Additionally, their high corrosion resistance makes them a good choice for structural materials. Despite this, the push to use aluminum alloys in ever more extreme environments with higher temperatures, stresses, …


Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee Aug 2020

Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee

Doctoral Dissertations

The objectives of this proposed study are to (1) design and develop single BCC phase refractory high-entropy alloys (HEAs) for the high-temperature applications, (2) investigate the deformation mechanisms of refractory HEAs, (3) improve an integrated approach, coupling focused experiments and theoretical modeling, to design, discover, and develop HEAs, and (4) understand the alloy design-microstructure-property-performance links underlying the mechanical behavior of refractory HEA systems for gas-turbine applications

A traditional alloy system generally includes one or two principal elements that form the matrix with other additional elements, e.g., iron or aluminum alloys, to strengthen some specific properties, such as strength and corrosion …


Cracking And Earing Phenomenon In Deep-Drawn Stainless Steel Alloys: Role Of Transformation Kinetics, Microstructure, And Texture, Peijun Hou Aug 2020

Cracking And Earing Phenomenon In Deep-Drawn Stainless Steel Alloys: Role Of Transformation Kinetics, Microstructure, And Texture, Peijun Hou

Doctoral Dissertations

The enhancement of formability of advanced high-strength TRIP-assisted steel alloys is a challenging assignment for industrial application due to the cracking phenomenon. The critical factor governing the cracking behavior is residual-stress concentration resulting from the inhomogeneous plastic deformation and microstructural evolution during the forming processes. Martensitic phase transformation kinetics, constituent phases, and crystallographic texture in TRIP-assisted steel alloys are correlated to the microstructure evolution, resulting in phase-specific stress concentration. In the current study, we are aiming at understanding the fundamental mechanisms responsible for the cracking phenomenon and thus improving the formability of TRIP-assisted steel alloys. Four stainless steel (SS) alloys …


Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao May 2017

Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao

Doctoral Dissertations

To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants.

All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr- Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. The AlxCrCuFeMnNi HEAs have disordered [face-centered-cubic (FCC) + body-centered-cubic (BCC)] crystal structures. Excessive alloying of the Al …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Fundamental Understanding Of Bond Formation During Solid State Welding Of Dissimilar Metals, Niyanth S Aug 2016

Fundamental Understanding Of Bond Formation During Solid State Welding Of Dissimilar Metals, Niyanth S

Doctoral Dissertations

Dissimilar metal welds are used in a wide range of applications to effect light weighting and for corrosion resistance. While fusion welding techniques are limited in their ability to fabricate dissimilar metal welds, solid state welding techniques are limited in their ability to fabricate complex geometries with dissimilar metal combinations. Hence alternative techniques need to be explored to fabricate complex geometries with dissimilar metals welds in the solid state. Ultrasonic additive manufacturing in a solid state additive manufacturing process that combines ultrasonic welding with mechanized tape layering to fabricate dissimilar metal welds in the solid state. Though extensive feasibility studies …


Evaluation Of The Potential For Weld-Related Cracking In Cast 20cr-32ni-1nb Heat-Resistant Stainless Steel, John William Bohling Aug 2016

Evaluation Of The Potential For Weld-Related Cracking In Cast 20cr-32ni-1nb Heat-Resistant Stainless Steel, John William Bohling

Masters Theses

Steam reforming of hydrocarbons is an important process for the production of hydrogen for industrial needs, such as ammonia synthesis. Due to the high temperature conditions (700 °C–900 °C), reformer furnace components require materials with excellent creep properties and thus highly alloyed austenitic stainless steels are typically employed. For reformer outlet manifolds, a cast, heat-resistant stainless steel with the composition 20Cr-32Ni-1Nb (ASTM A351 Grade CT15C) is widely used. However, after service exposure this alloy exhibits problems with liquation cracking in the base metal heat-affected zone (HAZ) during repair welding. In the work presented herein, two heats of material from centrifugally-cast …


Microstructure And Creep Deformation Behavior Of A Hierarchical-Precipitate-Strengthened Ferritic Alloy With Extreme Creep Resistance, Gian Song May 2016

Microstructure And Creep Deformation Behavior Of A Hierarchical-Precipitate-Strengthened Ferritic Alloy With Extreme Creep Resistance, Gian Song

Doctoral Dissertations

Hierarchical NiAl [nickel-aluminium compound]/Ni2TiAl [nickel-titanium-aluminum compound] or single Ni2TiAl-precipitate-strengthened ferritic alloys have been developed by adding 2 or 4 weight percent [wt. %] of Ti [titanium] into a previously-studied NiAl-precipitate-strengthened ferritic alloy. A systematic investigation has been conducted to study the interrelationships among the composition, microstructure, and mechanical behavior, and provide insight into deformation micro-mechanisms at elevated temperatures.

The microstructural attributes of hierarchical or single precipitates are investigated in the Ti-containing ferritic alloys. Transmission-electron microscopy in conjunction with the atom-probe tomography is employed to characterize the detailed precipitate structure. It is observed that the 2-wt.-%-Ti alloy …


Temperature-Dependent Structures And Atomic Mixing Behaviors In High-Entropy Alloys, Louis J. Santodonato May 2016

Temperature-Dependent Structures And Atomic Mixing Behaviors In High-Entropy Alloys, Louis J. Santodonato

Doctoral Dissertations

The goal of the present dissertation is to advance the fundamental understanding of the atomic mixing behavior in a new class of alloys, known as high-entropy alloys (HEAs), and provide new methods to develop HEAs for practical applications. The HEA design strategy is based upon the influence of configurational entropy of mixing, which serves as a driving force for the formation of disordered solid-solution structures in certain alloys. In particular, alloys containing multiple elements have a tendency to form stable, disordered structures, sometimes with exceptional engineering properties. Despite the tendency toward structural disorder, HEAs usually have some degree of structural …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Incipient Plasticity Of Metals And Alloys Using Nano-Indentation Technique, Dong Wu Aug 2015

Incipient Plasticity Of Metals And Alloys Using Nano-Indentation Technique, Dong Wu

Doctoral Dissertations

The incipient plasticity indicates the nucleation or activation of defects in materials and enables us to study the intrinsic mechanical properties of materials. In this dissertation, instrumented indentation technique was employed to study the incipient plasticity of metals (bcc-Cr, fcc-Ni, fcc-Au) and a fcc-structured high entropy alloy (HEA) NiFeCoMnCr. The critical shear stresses for pop-in in these materials were all within the range of theoretical strength of materials, indicating the nucleation of dislocations in perfect crystals.

In Chapter 3 and 4, indentation tests were conducted at elevated temperatures to study the pop-in behavior in bcc-Cr and fcc-Au. The pop-in load …