Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 42

Full-Text Articles in Signal Processing

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Denoising And Deconvolving Sperm Whale Data In The Northern Gulf Of Mexico Using Fourier And Wavelet Techniques, Kendal Mccain Leftwich Dec 2022

Denoising And Deconvolving Sperm Whale Data In The Northern Gulf Of Mexico Using Fourier And Wavelet Techniques, Kendal Mccain Leftwich

University of New Orleans Theses and Dissertations

The use of underwater acoustics can be an important component in obtaining information from the oceans of the world. It is desirable (but difficult) to compile an acoustic catalog of sounds emitted by various underwater objects to complement optical catalogs. For example, the current visual catalog for whale tail flukes of large marine mammals (whales) can identify even individual whales from their individual fluke characteristics. However, since sperm whales, Physeter microcephalus, do not fluke up when they dive, they cannot be identified in this manner. A corresponding acoustic catalog for sperm whale clicks could be compiled to identify individual …


Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman Mar 2022

Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman

Directivity

This directivity data set for a KEMAR head head-and-torso simulator (HATS) includes head orientations in 14 directions in 5° steps starting from 0° to 40° and then in 10° steps from 40° to 90°. The full spherical measurements followed at an a = 0.97 m radius with the mouth aperture at the spherical center. The sampling density and distribution followed the AES 5° dual-equiangular sampling standard, omitting the south pole (θ = 180°). Thus, each spherical directivity assessment included 36 polar-angle θ samples and 72 azimuthal-angle ϕ samples. The presented data include 22 1/3-octave bands, ranging from 80 Hz …


Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina May 2020

Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina

Honors Theses

Collie Box is a medical device that measures the gait parameters of the person walk- ing in front of it. This device uses the Ultrasonic Doppler system to extract the heel-contact and toe-off times of a person walking within the range of 2-10 meters. These times are used to determine the leg’s swing phase and double stance times. The ultrasonic transducer of 10mm diameter is driven at 40kHz. At the time of the heel-contact and toe-off, foot velocity is zero while the torso part of the human body is still in motion. The wide directivity of 10mm diameter ultrasonic transducer …


Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman Nov 2019

Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman

Directivity

Speech directivity describes the angular dependence of acoustic radiation from a talker’s mouth and nostrils and diffraction about his or her body and chair (if seated). It is an essential physical aspect of communication affecting sounds and signals in acoustical environments, audio, and telecommunication systems. Because high-resolution, spherically comprehensive measurements of live, phonetically balanced speech have been unavailable in the past, the authors have undertaken research to produce and share such data for simulations of acoustical environments, optimizations of microphone placements, speech studies, and other applications. The measurements included three male and three female talkers who repeated phonetically balanced passages …


A Harmless Wireless Quantum Alternative To Cell Phones Based On Quantum Noise, Florentin Smarandache, Robert Neil Boyd, Victor Christianto Sep 2019

A Harmless Wireless Quantum Alternative To Cell Phones Based On Quantum Noise, Florentin Smarandache, Robert Neil Boyd, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

In the meantime we know that 4G and 5G technologies cause many harms to human health. Therefore, here we submit a harmless wireless quantum alternative to cell phones. It is our hope that this alternative


Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr Dec 2017

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr

University of New Orleans Theses and Dissertations

This project started early in the summer of 2016 when it became evident there was a need for an effective and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological Monitoring and Modeling (LADC-GEMM) Research Consortium. LADC-GEMM collected underwater acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts and executed through terminal commands, each time requiring the data to be loaded into memory and parameters to be fed through arguments. The vision was to develop …


Digital Image Processing, Russell C. Hardie, Majeed M. Hayat Sep 2016

Digital Image Processing, Russell C. Hardie, Majeed M. Hayat

Russell C. Hardie

In recent years, digital images and digital image processing have become part of everyday life. This growth has been primarily fueled by advances in digital computers and the advent and growth of the Internet. Furthermore, commercially available digital cameras, scanners, and other equipment for acquiring, storing, and displaying digital imagery have become very inexpensive and increasingly powerful. An excellent treatment of digital images and digital image processing can be found in Ref. [1]. A digital image is simply a two-dimensional array of finite-precision numerical values called picture elements (or pixels). Thus a digital image is a spatially discrete (or discrete-space) …


Spatio-Spectral Sampling And Color Filter Array Design, Keigo Hirakawa, Patrick Wolfe Mar 2016

Spatio-Spectral Sampling And Color Filter Array Design, Keigo Hirakawa, Patrick Wolfe

Keigo Hirakawa

Owing to the growing ubiquity of digital image acquisition and display, several factors must be considered when developing systems to meet future color image processing needs, including improved quality, increased throughput, and greater cost-effectiveness. In consumer still-camera and video applications, color images are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby only a single component of the color space is measured at each pixel location. Substantial work in both industry and academia has been dedicated to post-processing this acquired raw image data as part of the so-called image processing pipeline, …


Gradient-Based Edge Detection Using Nonlinear Edge-Enhancing Prefilters, Russell Hardie, Charles Boncelet May 2015

Gradient-Based Edge Detection Using Nonlinear Edge-Enhancing Prefilters, Russell Hardie, Charles Boncelet

Russell C. Hardie

This correspondence examines the use of nonlinear edge enhancers as prefilters for edge detectors. The filters are able to convert smooth edges to step edges and suppress noise simultaneously. Thus, false alarms due to noise are minimized and edge gradient estimates tend to be large and localized. This leads to significantly improved edge maps.


Ranking In Rp And Its Use In Multivariate Image Estimation, Russell Hardie, Gonzalo Arce May 2015

Ranking In Rp And Its Use In Multivariate Image Estimation, Russell Hardie, Gonzalo Arce

Russell C. Hardie

The extension of ranking a set of elements in R to ranking a set of vectors in a p'th dimensional space Rp is considered. In the approach presented here vector ranking reduces to ordering vectors according to a sorted list of vector distances. A statistical analysis of this vector ranking is presented, and these vector ranking concepts are then used to develop ranked-order type estimators for multivariate image fields. A class of vector filters is developed, which are efficient smoothers in additive noise and can be designed to have detail-preserving characteristics. A statistical analysis is developed for the class of …


Lum Filters: A Class Of Rank-Order-Based Filters For Smoothing And Sharpening, Russell Hardie, Charles Boncelet May 2015

Lum Filters: A Class Of Rank-Order-Based Filters For Smoothing And Sharpening, Russell Hardie, Charles Boncelet

Russell C. Hardie

A new class of rank-order-based filters, called lower-upper-middle (LUM) filters, is introduced. The output of these filters is determined by comparing a lower- and an upper-order statistic to the middle sample in the filter window. These filters can be designed for smoothing and sharpening, or outlier rejection. The level of smoothing done by the filter can range from no smoothing to that of the medianfilter. This flexibility allows the LUM filter to be designed to best balance the tradeoffs between noisesmoothing and signal detail preservation. LUM filters for enhancing edge gradients can be designed to be insensitive to low levels …


Spectral Band Selection And Classifier Design For A Multispectral Imaging Laser Radar, Russell Hardie, Mohan Vaidyanathan, Paul Mcmanamon May 2015

Spectral Band Selection And Classifier Design For A Multispectral Imaging Laser Radar, Russell Hardie, Mohan Vaidyanathan, Paul Mcmanamon

Russell C. Hardie

A statistical spectral band selection procedure and classifiers for an active multispectral laser radar (LADAR) sensor are described. The sensor will operate in the 1 to 5 mm wavelength region. The algorithms proposed are tested using library reflectance spectra for some representative background materials. The material classes considered include both natural (vegetation and soil) and man-made (camouflage cloth and tar-asphalt). The analysis includes noise statistics due to Gaussian receiver noise and target induced speckle variations in the LADAR return signal intensity. The results of this analysis are then directly applied to an artificially generated spatial template of a scene consisting …


Super-Resolution Using Adaptive Wiener Filters, Russell C. Hardie May 2015

Super-Resolution Using Adaptive Wiener Filters, Russell C. Hardie

Russell C. Hardie

The spatial sampling rate of an imaging system is determined by the spacing of the detectors in the focal plane array (FPA). The spatial frequencies present in the image on the focal plane are band-limited by the optics. This is due to diffraction through a finite aperture. To guarantee that there will be no aliasing during image acquisiton, the Nyquist criterion dictates that the sampling rate must be greater than twice the cut-off frequency of the optics. However, optical designs involve a number of trade-offs and typical imaging systems are designed with some level of aliasing. We will refer to …


Hybrid Order Statistic Filter And Its Application To Image Restoration, Elizabeth Thompson, Russell Hardie, Kenneth Barner May 2015

Hybrid Order Statistic Filter And Its Application To Image Restoration, Elizabeth Thompson, Russell Hardie, Kenneth Barner

Russell C. Hardie

We introduce a new nonlinear filter for signal and image restoration, the hybrid order statistic (HOS) filter. Because it exploits both rank- and spatial-order information, the HOS realizes the advantages of nonlinear filters in edge preservation and reduction of impulsive noise components while retaining the ability of the linear filter to suppress Gaussian noise. We show that the HOS filter exhibits improved performance over both the linear Wiener and the nonlinear L filters in reducing mean-squared error in the presence of contaminated Gaussian noise. In many cases it also performs favorably compared with the Ll and rank-conditioned rank selection filters.


Application Of Multi-Frame High-Resolution Image Reconstruction To Digital Microscopy, Frank Baxley, Russell Hardie May 2015

Application Of Multi-Frame High-Resolution Image Reconstruction To Digital Microscopy, Frank Baxley, Russell Hardie

Russell C. Hardie

A high-resolution image reconstruction algorithm previously used to improve undersampled infrared airborne imagery was applied to two different sets of digital microscopy images. One set is that of medical pap smear images, and the second set contains metallurgical micrographs. Both the pap smear images and the metallurgical micrographs are undersampled, thus causing loss of detail and aliasing artifacts. The algorithm minimizes the effects of aliasing and restores detail unobtainable through simple interpolation techniques. Both applications demonstrate improvement by use of the image reconstruction algorithm.


Robust Phase-Unwrapping Algorithm Using A Spatial Binary-Tree Image Decomposition, Russell Hardie, Md. Younus, James Blackshire May 2015

Robust Phase-Unwrapping Algorithm Using A Spatial Binary-Tree Image Decomposition, Russell Hardie, Md. Younus, James Blackshire

Russell C. Hardie

The search for fast and robust phase-unwrapping algorithms remains an important problem in the development of real-time interferometric systems. Our phase-unwrapping approach uses a spatial binary-tree image decomposition to permit maximum parallelism in implementation. At each node in the tree structure, a single unwrapping decision is made between two image blocks. The unwrapping rule is derived from a statistical-estimation framework. Specifically, a maximum-likelihood estimate of the demodulation term is used. This term can be viewed as that which minimizes a discontinuity-penalizing cost function. We show that the algorithm exhibits a high level of robustness. Quantitative measures of performance are provided, …


Scene-Based Nonuniformity Correction With Video Sequences And Registration, Russell Hardie, Majeed Hayat, Ernest Armstrong, Brian Yasuda May 2015

Scene-Based Nonuniformity Correction With Video Sequences And Registration, Russell Hardie, Majeed Hayat, Ernest Armstrong, Brian Yasuda

Russell C. Hardie

We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance ~or true scene value!. These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and …


Techniques For The Regeneration Of Wideband Speech From Narrowband Speech, Jason A. Fuemmeler, Russell C. Hardie, William R. Gardner May 2015

Techniques For The Regeneration Of Wideband Speech From Narrowband Speech, Jason A. Fuemmeler, Russell C. Hardie, William R. Gardner

Russell C. Hardie

This paper addresses the problem of reconstructing wideband speech signals from observed narrowband speech signals. The goal of this work is to improve the perceived quality of speech signals which have been transmitted through narrowband channels or degraded during acquisition. We describe a system, based on linear predictive coding, for estimating wideband speech from narrowband. This system employs both previously identified and novel techniques. Experimental results are provided in order to illustrate the system’s ability to improve speech quality. Both objective and subjective criteria are used to evaluate the quality of the processed speech signals.


A Post-Processing Technique For Extending Depth Of Focus In Conventional Optical Microscopy, Taufiq Widjanarko, Russell Hardie May 2015

A Post-Processing Technique For Extending Depth Of Focus In Conventional Optical Microscopy, Taufiq Widjanarko, Russell Hardie

Russell C. Hardie

In this paper, we propose a post-processing technique to obtain optical microscope images with extended depth of focus using a conventional microscope. With the proposed technique, we collect a sequence of images focused at different depths. We then combine the in-focus regions of each acquired frame to compose a single all-in-focus image. That is, a new image with extended depth of focus is obtained. The key to such an algorithm is in selecting the “in-focus” regions from each frame. In this paper, we describe the technique used to identify the in-focus region on every depth slice. Quantitative simulation results are …


Application Of The Stochastic Mixing Model To Hyperspectral Resolution Enhancement, Michael Eismann, Russell Hardie May 2015

Application Of The Stochastic Mixing Model To Hyperspectral Resolution Enhancement, Michael Eismann, Russell Hardie

Russell C. Hardie

A maximum a posteriori (MAP) estimation method is described for enhancing the spatial resolution of a hyperspectral image using a higher resolution coincident panchromatic image. The approach makes use of a stochastic mixing model (SMM) of the underlying spectral scene content to develop a cost function that simultaneously optimizes the estimated hyperspectral scene relative to the observed hyperspectral and panchromatic imagery, as well as the local statistics of the spectral mixing model. The incorporation of the stochastic mixing model is found to be the key ingredient for reconstructing subpixel spectral information in that it provides the necessary constraints that lead …


An Algebraic Algorithm For Nonuniformity Correction In Focal-Plane Arrays, Bradley Ratliff, Majeed Hayat, Russell Hardie May 2015

An Algebraic Algorithm For Nonuniformity Correction In Focal-Plane Arrays, Bradley Ratliff, Majeed Hayat, Russell Hardie

Russell C. Hardie

A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity …


Subspace Partition Weighted Sum Filters For Image Restoration, Yong Lin, Russell Hardie, Kenneth Barner May 2015

Subspace Partition Weighted Sum Filters For Image Restoration, Yong Lin, Russell Hardie, Kenneth Barner

Russell C. Hardie

The previously proposed partition-based weighted sum (PWS) filters combine vector quantization (VQ) and linear finite impulse response (FIR) Wiener filtering concepts. By partitioning the observation space and applying a tuned Wiener filter to each partition, the PWS is spatially adaptive and has been shown to perform well in noise reduction applications. In this letter, we propose the subspace PWS (SPWS) filter and evaluate the efficacy of the SPWS filter in image deconvolution and noise reduction applications. In the SPWS filter, we project the observation vectors into a subspace using principal component analysis (PCA), or other methods, prior to partitioning. This …


A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie May 2015

A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie

Russell C. Hardie

A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a …


Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery With Arbitrary Response Functions, Michael Eismann, Russell Hardie May 2015

Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery With Arbitrary Response Functions, Michael Eismann, Russell Hardie

Russell C. Hardie

A maximum a posteriori (MAP) estimation method for improving the spatial resolution of a hyperspectral image using a higher resolution auxiliary image is extended to address several practical remote sensing situations. These include cases where: 1) the spectral response of the auxiliary image is unknown and does not match that of the hyperspectral image; 2) the auxiliary image is multispectral; and 3) the spatial point spread function for the hyperspectral sensor is arbitrary and extends beyond the span of the detector elements. The research presented follows a previously reported MAP approach that makes use of a stochastic mixing model (SMM) …


Improved Optimization Of Soft Partition Weighted Sum Filters And Their Application To Image Restoration, Yong Lin, Russell Hardie, Qin Sheng, Kenneth Barner May 2015

Improved Optimization Of Soft Partition Weighted Sum Filters And Their Application To Image Restoration, Yong Lin, Russell Hardie, Qin Sheng, Kenneth Barner

Russell C. Hardie

Soft-partition-weighted-sum (Soft-PWS) filters are a class of spatially adaptive moving-window filters for signal and image restoration. Their performance is shown to be promising. However, optimization of the Soft-PWS filters has received only limited attention. Earlier work focused on a stochastic-gradient method that is computationally prohibitive in many applications. We describe a novel radial basis function interpretation of the Soft-PWS filters and present an efficient optimization procedure. We apply the filters to the problem of noise reduction. The experimental results show that the Soft-PWS filter outperforms the standard partition-weighted-sum filter and the Wiener filter.


Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla May 2015

Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla

Russell C. Hardie

In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that …


Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff May 2015

Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff

Russell C. Hardie

Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without …


Joint Wavelet Transform Correlation With Separated Target And Reference Planes, Boon Yi Soon, Mohammad A. Karim, Russell C. Hardie, Mohammad S. Alam May 2015

Joint Wavelet Transform Correlation With Separated Target And Reference Planes, Boon Yi Soon, Mohammad A. Karim, Russell C. Hardie, Mohammad S. Alam

Russell C. Hardie

In recent years, we realize the usefulness of feature extraction for optical correlator and hereby, we investigate the capability of Laplace operator in feature extraction of multiple targets. The first-order terms and the false alarm terms in the correlation output would be removed using electronic power spectrum subtraction technique. Most importantly, the entire magneto-optic SLM is completely utilized for displaying only targets in the input scene. A new cost efficient hardware implementation is proposed and aforementioned result of the proposed system is evaluated through computer simulation.